Amputations of the Foot and Ankle

AOFAS Resident Review Course
September 28, 2013

Benedict F. DiGiovanni, MD
Professor of Orthopaedics and Rehabilitation
Division, Foot and Ankle Surgery

Director, Musculoskeletal Curriculum
University of Rochester School of Medicine and Medical Center
Disclosure

- Consultant for Biomimetics
Foot Salvage / Partial Amputations

- **CORE PRINCIPLES**

- **Major Goals** –
 - Attempt to **AVOID** Transtibial Amputation (TTA)
 - Achievement of **COMPLETE** healing with a **STABLE** soft tissue envelope
 - **PLANTIGRADE, BALANCED** functional foot
Amputations - Etiologies

- Peripheral Vascular Disease
- Trauma
- Chronic Infection
- Tumors
- Congenital Abnormalities
- Diabetes
Diabetes Statistics

- **Leading Cause of:**
 - Blindness
 - Heart Disease
 - Vascular Disease
 - End-Stage Renal Disease

- **Lower Limb Amputation – Transtibial** (67,000 yr)
 - 30%-50% lose other limb within 3-5 years (Friel, JAAOS 2005)
 - 2/3 diabetics die within 5 years
Diabetic Foot Problems

- Peripheral Neuropathy
 - Stocking / (glove)
 - Loss of protective sensation, 5.07 MF
- Neuropathic Ulceration
- Infection
 - Cellulitis
 - Abscess
 - Osteomyelitis
- Charcot Neuropathic Arthropathy
Foot Salvage / Partial Amputations

- LEARNING OBJECTIVES
Learning Objectives

- Review foot/ankle anatomy relevant to amputations
- Identify and understand **factors** that lead to **Optimal level of amputation**
Learning Objectives

- Describe and understand **surgical techniques**
 - Potential complications *(OITE)*

- Understand and apply appropriate **post operative management** principles
 - Shoe modifications, orthoses, prostheses *(OITE)*

- Learn **expected outcomes** of partial foot amputations
Optimal Level of Amputation

FACTORS

- Bone and Joint Anatomy
- Soft Tissue Viability and Durability
 - Blood Supply
- Soft Tissue Balancing
- Save Length
Bone and Joint Anatomy

Bones

Joints

Tendon Insertions
Joint Disarticulations - Mid Osseous

- Syme
- Chopart
- Lisfranc
- Transmetatarsal
- Metatarsal-Phalangeal
- Toe amp or disarticulation
Soft Tissue Viability / Durability Biology

• Blood Supply
 • TcPO2 >30 mmHG (OITE 2006)
 • ABI
 • >0.45 diabetics
 • >0.35 trauma
 • Beware non-compressible vessels
 • Absolute toe pressure >45 mmHG (OITE 2002)
Soft Tissue Viability / Durability

Biology

• Blood Supply
 • TcPO2 >30 mmHG (OITE 2006)
 • ABI
 • >0.45 diabetics
 • >0.35 trauma
 • Beware non-compressible vessels
 • Absolute toe pressure >45 mmHG (OITE 2002)

• Nutrition
 • Abs lymphocyte count>1500mm3
 • Albumin > 3.5 g/dl (OITE 2004)
Soft Tissue Balancing

- **Dorsiflexion**
 - Tibialis Anterior
 - Tibialis Posterior
 - Gastroc-Soleus

- **Plantarflexion**

- **Varus**

- **Valgus**

AOFAS Resident Review
Extremity Length

- When soft tissue envelope allows....
 - PRESERVE LENGTH
 - Oxygen consumed per meter traveled (ml/kg – meter)

- AKA > BKA > Symes/Chopart
 - Vascular Amputees
 - AKA: 100% more
 - BKA: 60%
 - Syme/: 30%
 - Chopart
 - Traumatic
 - AKA: 60% more
 - BKA: 30%
 - Syme/: 10%
 - Chopart

- Strive For..........
Extremity Length

- **Strive For –**
 - Preserved length

- **But - Remove enough bone.....**
 - Primary wound closure
 - Avoid STSG
Surgical Techniques - Complications

- MTP / IP joint
- Ray resection
- Transmetatarsal
- Chopart’s
- Calcanectomy
 - Total or partial
- Syme’s
Amputation
MTP or IP joint

- Incisions
 - racquet type
 - Fish mouth
 - Flaps – side to side, or dorsal-PL
 - Bone resection base flaps
- Great Toe
 - Leave 1 cm base prox phalanx
 - Some function / WB preserved
 - PF, FHB
Amputation
Ray Resection

- Border Rays
- Central Rays

- Border Rays do better
- Can function very well
Amputation
Ray Resection

- Border Rays

- Incision
 - Racquet, dorsal and PL flaps
- **Bone resection level**
 - Much more proximal than flaps
- Remember: save all viable tissue

- Plantar ulcer: separate elliptical excision
 - keep open, drain placed
Amputation Complications

- Ray Resection
 - If 3+ rays, take 5 (Transmetatarsal)
 - Improper soft tissue balancing

- Toe drift
- Claw toe
- Recurrent adjacent ulcerations
Amputation
Post op Care

- Ray Resection
 - Ray forefoot filler to avoid shear

- Wide toe, extra depth shoe
- Shoe with steel shank or carbon
 - Extends foot lever
 - Prevents deformity at toe break

(OSAE 2009)
Amputation Transmetatarsal

• Skin incisions key
 - Long plantar flap preferred
 - Bevel plantar aspect
Amputation
Transmetatarsal

- *Bone Resection Level*
 - MT length cascade important
 - Preserve tendon attachments when can. WHEN CANNOT.....

What Deforming Forces are still attached?
Amputation Complications

- TRANSMETATARSAL
- Recurrent ulcerations
 - Plantar
 - Cascade problem; or new bone formation
 - Distal edge of stump
 - Equinus contracture
 - Achilles tendon lengthening
 - Lateral skin
 - If peroneus brevis is disrupted, risk varus - lateral skin breakdown
 - Reattach PB when needed, OR lengthen Post Tib
Amputation
Post-Op Care

TMA

Aftercare
• High top shoe / sneaker
• TCI with Forefoot Filler
• Some need locked ankle braces
Amputation Chopart’s

- Disarticulate at TN/CC joints
 - Chopart’s jts
- Skin incisions: dorsal/plantar

- What major tendon Disrupted?
- What Deforming Force is still attached?
Chopart’s Amputation

- Tibialis anterior tendon
- Reattachment required
Choparts Amputation

Tenodesis Tib Ant
• To Talus
• Bone trough - screw
• Or staple
• Preserve active ankle dorsiflexion

Achilles Tendon
Lengthening
• Avoid complication of equinus contracture
 (OITE 2004)
Choparts Amputation

Post op Care

- AFO with Forefoot filler
- Potential for articulated AFO
Total or Partial Calcanectomy

Indications *(OSAE 2007, 1998)*

- Chronically infected heel ulcer
- Evidence of osteomyelitis
 - MRI, indium WBC scan
- Satisfactory arterial flow
- Failed nonop treatment
Total or Partial Calcanectomy

- **Indications** *(OSAE 2007, 1998)*

- **Techniques**
 - Partial – tuberosity
 - Total - thru subtalar and CC joints
Total or Partial Calcanectomy

- Advantages – retained foot, no prosthesis
- Complications
 - PF weakness, new foot wounds
 - High failure rates

- Post-Op care –
 - AFO with heel containment orthotic filler
Amputation
Syme’s

- Syme (ankle disarticulation)
 - Remove malleoli
 - Patent posterior tibial artery necessary to heal
 - Heel pad **must be** secured to tibia and extensor tendons
Syme’s Amputation

Complications

- Heel pad migration
- Button-hole posterior calcaneal skin, insufficient wound healing
- Neuroma formation (Trauma)
- Cosmesis not great – “wide ankle”
Syme’s Amputation

- Advantages
 - End bearing, heel pad preserved
 - No auxiliary suspension mechanisms (OITE 2001)
 - Can ambulate without prosthesis

- Post-op care
 - SACH heel / foot
 - PTB AFO

OITE is a registered trademark of the American Academy of Orthopaedic Surgeons®
Partial Foot Amputations

Outcomes VERSUS Transtibial Amputation

- Mortality rate?
- Proximal reamputation rates?
- Ambulatory status?

- University of Rochester experience
 - Partial Foot Amputation in Pts with Diabetic Foot Ulcers
 - Brown, et al, FAI 2012
Partial Foot Amputations

<table>
<thead>
<tr>
<th></th>
<th>TTA</th>
<th>TMA</th>
<th>Chopart</th>
<th>P Calc</th>
<th>T Calc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>18</td>
<td>21</td>
<td>10</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Deaths</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1-year mortality rate</td>
<td>0.23</td>
<td>0.00*</td>
<td>0.2</td>
<td>0.12</td>
<td>0.38</td>
</tr>
<tr>
<td>3-year mortality</td>
<td>0.30</td>
<td>0.05*</td>
<td>0.3</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>5-year mortality</td>
<td>0.45</td>
<td>0.3</td>
<td>0.4</td>
<td>0.69</td>
<td>0.59</td>
</tr>
<tr>
<td>Proximal reamps</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Time to proximal reamputation [years]</td>
<td>0.1(_{n=1})</td>
<td>2.3</td>
<td>2.3</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Postoperative ambulatory status</td>
<td>2.8</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

1 - Wheelchair, 2 - supervised household, 3 - limited house, 4 - unlimited house, 5 - limited community, 6 - unlimited comm

* indicates significance.
Partial Foot Amputations

Partial Foot Amputation in Pts with Diabetic Foot Ulcers

• Brown et al, FAI 2012

• Conclusions
 • TTA high M&M; partial foot amps should be investigated
 • Only TMA at 1 and 3 yrs stat significant lower mortality than TTA
 • Other levels no statistically improved survivorship

• TMA and Chopart’s: high ambulatory levels and longest durability --- may provide some ambulatory advantage
 • But potential risk more prox amp, particularly Chopart within 3 yrs
Foot Salvage / Partial Amputations

-- Summary

- Reviewed CORE PRINCIPLES

- Major Goals –
 - Attempt to AVOID transtibial amputations
 - Partial Foot Amps
 - Higher ambulatory levels, some with good durability – LEVEL DEPENDENT
 - But high mortality rates, proximal re-amp rates

 - Achievement of COMPLETE healing with STABLE soft tissue envelope

- PLANTIGRADE, BALANCED functional foot
 - Awareness functional anatomy; reattach, lengthen tendons
Thank You

“Up-State Living”

University of Rochester and Medical Center