Drop Foot

AOFAS Resident Review Course
September 28, 2013

Constantine A. Demetracopoulos, MD
Hospital for Special Surgery
Disclosure

- Nothing to disclose
Overview

- Anatomy
- Etiology
- Evaluation
- Non-operative treatment
- Operative treatment
Anatomy

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Insertion</th>
<th>Innervation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>Med cun & base of 1<sup>st</sup> MT</td>
<td>L4-S1; L4; DPN</td>
<td>Dorsiflex & Invert</td>
</tr>
<tr>
<td>EDL</td>
<td>Extensor aponeurosis of lesser toes</td>
<td>L4-S1; L5; DPN</td>
<td>Ext toes & Dorsiflex</td>
</tr>
<tr>
<td>EHL</td>
<td>Base of distal phalanx hallux</td>
<td>L4-S1; L5; DP</td>
<td>Ext toe & Dorsiflex</td>
</tr>
<tr>
<td>PL</td>
<td>Base of 1<sup>st</sup> MT & med cun</td>
<td>L4-S1; S1; SPN</td>
<td>PF 1<sup>st</sup> ray & Evert</td>
</tr>
<tr>
<td>PB</td>
<td>Base of 5<sup>th</sup> MT</td>
<td>L4-S1; S1; SPN</td>
<td>Evert</td>
</tr>
<tr>
<td>GCS</td>
<td>Calc</td>
<td>L5-S2; S1; Tib</td>
<td>PF & Invert</td>
</tr>
<tr>
<td>FDL/FHL</td>
<td>Distal phalanx toes</td>
<td>L5-S2; S1; Tib</td>
<td>Flex toe, PF & invert</td>
</tr>
<tr>
<td>TP</td>
<td>Navicular, midfoot, forefoot</td>
<td>L5-S1; Tib</td>
<td>Invert & PF</td>
</tr>
</tbody>
</table>
Etiology of Paralytic Foot

- CNS – ex. CVA, head trauma
 - Spasticity, hyperreflexia
- Spine
 - Radiculopathy
 - Spondylolysis
 - Spinal Stenosis
- Peripheral nerve injury
 - Traumatic – Penetrating or blunt, knee dislocation, compartment syndrome
 - Iatrogenic – THA or TKA
 - Injury to Sciatic nerve during THA more likely to affect CPN
 - Valgus and flexion contracture increase risk of injury during TKA.
 - Neoplastic / Mass effect
Assessment of Foot Drop

- **Steppage gait, “Slap foot gait”**
 - Excessive hip and knee flexion during swing phase of gait to allow the foot and toes to clear the ground
- **Swing phase**
 - Supination deformity -> CPN injury affecting Extensors & Peroneals
- **Stance phase**
 - Walk on the lateral border of the foot
- **Assess range of motion.** **Flexible vs. Fixed**
- **Muscle strength testing**
 - Beware of secondary recruitment
 - Walk on their heels
- **Sensory exam**
 - L4 radiculopathy versus Common Peroneal Neuropathy
- **Reflexes**
 - Upper MN versus Lower MN
Assessment of Foot Drop

- Weight bearing radiographs
- MRI
 - Lumbar radiculopathy
 - Knee dislocation
 - TA rupture (dx evident by exam)
 - Neoplasm / mass effect
- EMG/NCV
 - EMG – **Sharp waves & fibrillations** at 3-5 wks, rest activity
 - NCV – Motor and sensory latency
 - **Prolonged in compression neuropathy, absent in nerve laceration distal to injury.**
 - Baseline and f/u to assess recovery
Treatment

- PT for heel cord stretching
- AFO
 - Plantar flexion stop hinge
 - Dorsiflexion-assist
 - Flaccid paralysis -> fixed AFO
- Nerve Decompression
 - Lumbar decompression
- Nerve repair / grafting
 - Knee dislocation
 - < 6cm 70%
 - 6 – 12cm 43%
 - 13 – 24cm 25%
Treatment

- **Timing**
 - Acute nerve laceration -> *Acute repair*
 - CVA -> **12 to 18 months** of rehab to determine motor recovery
 - 25% regain normal ambulation, 75% some level of ambulation
 - Closed head injury -> **12 to 18 months** of rehab to determine motor recovery
 - Knee dislocation/CPN crush/stretch injury
 - Evidence to suggest that early tendon transfer time of nerve graft may improve outcomes
 - Ferraresi et al. Neurosurg Rev 2003
Treatment

- Tendon Transfer
 - Should not be performed if nerve function may recover
 - Flexible deformities
 - Muscle will lose one grade of strength after transfer
 - In-phase / Out-of-phase (swing or stance phase)
 - In-phase transfer functions in a dynamic manner
 - Out-of-phase transfer is a static restraint to deformity
 - ?phase conversion
 - Goal – Walk without a brace
Treatment

- Posterior tibial tendon transfer to the dorsum of the foot (out-of-phase)
 - Interosseous membrane
 - PTT in direct line from its muscle through IOM to lateral cuneiform
 - Anchor point is lateral cuneiform - slightly lateral of midline to promote DF and Eversion
 - PTT may be constricted and stenosed within window in IOM
 - Anteromedial tibia
 - PTT is not in direct line from its origin to anchor point
 - Anchor point is middle cuneiform, smaller bone, greater risk of fracture
 - Does not stenose at the IOM and glides smoothly around tibia
Treatment

- PTT transfer
 - Tension with ankle at 10 degrees of DF
 - May require Achilles lengthening
 - FDL transfer to the navicular to oppose P. brevis
 - Botulinum toxin injections into the gastrocnemius-soleus complex to protect the tendon transfer post-op
 - Early active immobilization has **no added risk for tendon pullout** and has **similar functional outcomes** compared with immobilization
 - Rath et al. CORR 2010 – RCT Level I study
Treatment

- Briddle
 - Potential of making a flaccid paralysis brace-free
 - Tendon transfer is static, functions as a tenodesis
 - PTT through IOM and a slit in the TA tendon -> medial cuneiform
 - PL transected proximally, pulled distally at the cuboid tunnel, and passed subcutaneously to the anterior ankle wound
 - Suture with foot in 10 degrees of DF, heel in neutral to slight valgus
- Arthrodesis for fixed deformities

Take home points

- Identify the cause
- Assess deformity
- Thorough assessment of what is missing and what is left
- Timing of intervention
- Tendon transfer only when there is no recovery
- Tendon transfer in a flexible deformity, arthrodesis in a fixed deformity
- Low threshold for Achilles lengthening
- Tension transfer in 10 degrees of DF
Image Source

Thank You