Surgical Treatment
For
4th Curly Toe Deformity

Department of Orthopedic Surgery, Inje University, Ilsan Paik Hospital, Goyang-si, Korea
*W Institute for Foot and Ankle Diseases & Trauma, W Hospital, Deagu, Korea

*Jun Young Choi, Ji Ho Nam, Hyung Jun Park, Jin Soo Suh
Surgical treatment for 4th curly toe deformity

Jun Young Choi, Ji Ho Nam, Hyung Jun Park, Jin Soo Suh

My disclosure is in the Final AOFAS Mobile App. I have no potential conflicts with this presentation.
Introduction & Purpose

4th curly toe deformity

- Characterized by flexion, varus rotation of proximal/distal phalanx to PIP/DIP joint

- 2 peak: early childhood & infancy
 middle aged women – affected by life-style & shoe wearing habits

- Surgical treatment is recommended in case of rigid digital contracture with hyperkeratotic lesion which cause pain and walking difficulty.

- A retrospective study to introduce the availability of ‘Dorso-lateral closing wedge shaped Resectional arthroplasty’ for symptomatic 4th curly toe deformity in adult
Introduction & Purpose

4th curly toe deformity

• Our hypothesis
 : **Toe length** would be the most important factor

Long toe
 : Apex of varus → PIP joint
 : Pain underriding of affected toe after shoe wear

Short toe
 : Apex of varus → DIP joint
 : Congenital structural deformity include delta phalanx
Materials & Method

- From Jan, 2003 ~ Dec, 2013, Minimum follow-up: 1 year
- Exclusion criteria:
 1) Young age (<18 years old)
 2) Systemic inflammatory disease
 3) Predisposing trauma → amputation, malunion

Patient Characteristics

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>46 (21 to 79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3 (12.5)</td>
</tr>
<tr>
<td>Female</td>
<td>21 (87.5)</td>
</tr>
<tr>
<td>Side</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>15 (56)</td>
</tr>
<tr>
<td>Left</td>
<td>17 (44)</td>
</tr>
<tr>
<td>Anesthesia</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Spinal</td>
<td>23 (72)</td>
</tr>
<tr>
<td>Local</td>
<td>7 (22)</td>
</tr>
<tr>
<td>Combined surgery</td>
<td></td>
</tr>
<tr>
<td>Hallux valgus</td>
<td>5</td>
</tr>
<tr>
<td>Hallux rigidus</td>
<td>1</td>
</tr>
<tr>
<td>Hallux valgus + pes planus</td>
<td>1</td>
</tr>
<tr>
<td>Taylor’s bunion</td>
<td>1</td>
</tr>
</tbody>
</table>
Materials & Method

• Surgical technique

Long toe
- Resection at PIP level to make shortening easier

Short toe
- Resection at DIP level for isolated correction of varus deformity
Materials & Method

• Surgical technique
Materials & Method

- Radiologic outcome assessment
 1. Degree of *incurvation* (varus/valgus)
 2. Degree of *shortening* on standing AP images

- Clinical outcome assessment
 1. AOFAS lesser MTP-IP scale
 2. Post-operative *complications*

- Subjects were divided into 4 groups:
 - according to the *relative length* of the 4th toe to the 3rd (100 percentile) and 5th (0 percentile)

<table>
<thead>
<tr>
<th>ST (Short toe),</th>
<th>Less than 40 percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT (Normal toe),</td>
<td>40~60 percentile</td>
</tr>
<tr>
<td>LT (Long toe),</td>
<td>60~100 percentile</td>
</tr>
<tr>
<td>ELT (Extremely long toe),</td>
<td>More than 100 percentile</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>ST (n = 6)</th>
<th>NT (n = 8)</th>
<th>LT (n = 10)</th>
<th>ELT (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>35 ± 15</td>
<td>45 ± 13</td>
<td>44 ± 17</td>
<td>45 ± 21</td>
</tr>
<tr>
<td>Toe length (percentile)</td>
<td>31 ± 6</td>
<td>52 ± 6</td>
<td>75 ± 7</td>
<td>197 ± 77</td>
</tr>
<tr>
<td>Resection level</td>
<td>DIP(6)</td>
<td>DIP(7), PIP(1)</td>
<td>PIP(10)</td>
<td>PIP(8)</td>
</tr>
<tr>
<td>Preoperative AP inclination (degrees)</td>
<td>36 ± 10</td>
<td>41 ± 14</td>
<td>37 ± 10</td>
<td>52 ± 29</td>
</tr>
<tr>
<td>Postoperative AP Inclination (degrees)</td>
<td>10 ± 7</td>
<td>14 ± 8</td>
<td>7 ± 8</td>
<td>11 ± 10</td>
</tr>
<tr>
<td>Mean shortening (mm)</td>
<td>2.2 ± 1.7</td>
<td>2.9 ± 2.0</td>
<td>4.4 ± 2.2</td>
<td>4.9 ± 2.3</td>
</tr>
<tr>
<td>Preoperative AOFAS score</td>
<td>51 ± 2</td>
<td>49 ± 0</td>
<td>51 ± 2</td>
<td>51 ± 2</td>
</tr>
<tr>
<td>Postoperative AOFAS score</td>
<td>93 ± 4</td>
<td>87 ± 10</td>
<td>91 ± 6</td>
<td>87 ± 6</td>
</tr>
</tbody>
</table>

- **Resection level**: ST, NT (7 of 8) : DIP // NT (1 of 8), LT, ELT : PIP
- **Op. time**: 10~15 min
- **Temporary k-wire fixation for 4 weeks**
- **Complications**
 - Recurrence: 2 → Inadequate resection level
 - Floating toe: 2 → Need for MTP correction
Discussion

Conventional treatment options for curly toe deformity
1) Conservative tx. (taping, orthosis)
2) Dorsally biased elliptical incision
3) Flexor to extensor transfer
4) **Simple flexor tenotomy** \(\rightarrow\) Current Treatment of choice

Resectional arthroplasty for deformity correction
1) for patients with RA & forefoot deformity
2) for infected non-healing ulcers with toe deformity in Diabetic patients
 \(\rightarrow\) **No reports** for simple curly toe deformity without predisposing factors

Limitations of our study
1) Degree of **postoperative derotation** \(\rightarrow\) Not measured
2) **Retrospective** study design
3) Not compared to the result of conventional **flexor tenotomy**
Conclusion

• Dorso-lateral closing wedge shaped resection arthroplasty for 4th curly toe deformity

• Easy, Simple, Effective surgical technique with an excellent correctability & high patients’ satisfaction

• Resection level decision
 - ST/NT group → DIP
 - LT/ELT group → PIP

