Polyethylene Wear in Total Ankle Replacement is Significantly Reduced with Use of Highly Crosslinked Polyethylene

Jeffrey E. Bischoff, J. Craig Fryman, Diego A. Orozco-Villaseñor
Research, Zimmer, Inc., Warsaw IN
Disclosure

Polyethylene Wear in Total Ankle Replacement is Significantly Reduced with Use of Highly Crosslinked Polyethylene

Jeffrey E. Bischoff

My disclosure is in the Final AOFAS Program Book.

I have a potential conflict with this presentation due to:
I am a Zimmer employee.
Introduction

Wear debris of polyethylene within total ankle replacement (TAR) can result in osteolysis and component loosening [1-4].

- **Highly-crosslinked polyethylene** (HXPE) was introduced into other total joint replacement systems to improve these outcomes.

- Bearing couples within TAR systems have historically used **conventional polyethylene** (CPE) articulating on metal; but improved wear performance could be obtained through use of HXPE.

Hypothesis: Use of HXPE within TAR will result in significantly lower wear rates than with CPE.
Methods: Components

- **Components**: Zimmer® Trabecular Metal™ Ankle semiconstrained TAR implant system
 - HXPE samples (n=6)
 - CPE samples (n=6)
 - Note: CPE samples were manufactured solely for this study, and are not cleared for clinical use
 - Load-soak controls for each polyethylene (n=2)
Methods: Material Processing

CPE

Bar Stock

Machine

Package & Sterilize

HXPE

Bar Stock

E-Beam Irradiation

Remelt

Machine

Package & Sterilize

Chain scission

Crosslink formation
Methods: Wear Testing

• All testing was performed on a multi-axis, displacement controlled knee wear simulator (AMTI Inc., Watertown, MA)
• Specimens were tested in a physiological environment (20 mg/mL protein concentration bovine calf serum; 37 ± 3° C) for 5.0 million cycles at 1Hz
• Mass loss was measured at fixed intervals; particle debris was isolated for morphological analysis
Methods: Kinematics and Kinetics

• Load and motion waveforms representative of human level walking gait [5] were utilized
 - 3188N peak load
 - 16.0° plantarflexion (-) to 15.2° dorsiflexion (+)
 - 2.0° internal (-) to 8.0° external (+) rotation
 - 1.5 mm anterior (+) to 1.5 mm posterior (-) displacement
Results: Gravimetric Wear

- Average gravimetric wear rates for CPE and HXPE samples were $7.4 \pm 1.2 \text{ mg/Mc}$ and $1.9 \pm 0.3 \text{ mg/Mc}$ respectively.
- HXPE samples exhibited a significant ($p<.01$) wear rate reduction of 74% when compared with CPE.

![Graph showing weight loss vs cycles for CPE and HXPE samples.](image-url)
Results: Wear Scars

- **Wear scars** (contact patterns) at 5.0Mc reflect the conformity of the bicondylar design of the bearing couple, and are qualitatively insensitive to the type of polyethylene.

![HXPE](image1.png) ![CPE](image2.png)
Results: Debris Analysis

HXPE had larger aspect ratio ($p=.008$) and smaller equivalent circular diameter ($p=.002$) than CPE.

<table>
<thead>
<tr>
<th></th>
<th>HXPE</th>
<th>CPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect Ratio</td>
<td>2.05 ± 0.13</td>
<td>1.79 ± 0.06</td>
</tr>
<tr>
<td>Equivalent Circular Diameter (µm)</td>
<td>0.17 ± 0.02</td>
<td>0.24 ± 0.02</td>
</tr>
</tbody>
</table>
Discussion

• The observed signification reduction in wear due to use of HXPE in TAR is consistent with reductions seen in other total joint replacement systems [6,7]

• Wear rates of the bicondylar design with HXPE are decreased relative to those previously reported on other TAR systems using CPE [5]

• Clinical relevance: Highly-crosslinked polyethylene may reduce clinical complications of total ankle replacement that are linked to polyethylene wear.
References

