PedCAT for 3D-Imaging in Standing Position Measures Angles More Accurate than Radiographs or CT

Richter M, Zech S, Seidl B, Hahn S
Department for Foot and Ankle Surgery Rummelsberg / Nürnberg, Germany
PedCAT for 3D-Imaging in Standing Position
Measures Angles More Accurate than Radiographs or CT

Martinus Richter

My disclosure is in the Final AOFAS Mobile App.

I have a potential conflict with this presentation due to:
Consultant Curvebeam
Radiological imaging foot and ankle

- **2D WITH** weightbearing (x-ray)
 - Feet dorsoplantar / lateral
 - Ankle ap (Mortise) / lateral
 - Metatarsal-skyline-view
 - Saltzman-view

- **3D WITHOUT** weightbearing (CT)
2D WITH weightbearing

• Dependent on projection

Same patient; different projection (central beam)
Introduction

Methods

Results

Conclusions

W ithout w/b TMT-11°

Same patient

With w/b TMT-22°
3D WITH weightbearing PedCAT
Radiation dose comparable with 6 digital radiographs and 5.6% CT

Ludlow et al.
Methods

• Prospective, consecutive study
• n= 30 patients
• Imaging
 - standard digital radiographs full weightbearing in standing position (feet bilateral dorsoplantar & lateral views, hindfoot view)
 - CT without weightbearing supine position (foot in neutral position)
 - PedCAT (feet bilateral) scan full weightbearing standing position
Measurement example pedCAT

- TMT dorsoplantar
- TMT lateral
- hindfoot angle
Time spent

Image acquisition

- Radiographs 902 ± 70 s
- PedCAT 270 ± 44 s
- CT 415 ± 46 s

- ANOVA, $p < .001$, post hoc all versus all $p < .01$
Angles

ANOVA X-ray vs. CT vs. PedCAT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM-angle</td>
<td><0,001</td>
</tr>
<tr>
<td>TMT dorsoplantar</td>
<td><0,001</td>
</tr>
<tr>
<td>TMT lateral</td>
<td><0,001</td>
</tr>
<tr>
<td>Hindfoot angle</td>
<td><0,001</td>
</tr>
<tr>
<td>Calcaneal pitch angle</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Pos Hoc Scheffe Test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PedCAT vs.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM-angle</td>
<td>X-ray</td>
<td><0,001</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td><0,001</td>
</tr>
<tr>
<td>TMT dorsoplantar</td>
<td>X-ray</td>
<td>0,561</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td><0,001</td>
</tr>
<tr>
<td>TMT lateral</td>
<td>X-ray</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td><0,001</td>
</tr>
<tr>
<td>Hindfoot angle</td>
<td>X-ray</td>
<td><0,001</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td><0,001</td>
</tr>
<tr>
<td>Calcaneal pitch angle</td>
<td>X-ray</td>
<td>0,701</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>0,013</td>
</tr>
</tbody>
</table>
pedCAT

• Image acquisition with pedCAT faster than with CT / radiographs

• Measured angles differ between pedCAT and CT / radiographs (except TMT dorsoplantar / calcaneal pitch angle pedCAT versus radiographs)

• Technically only pedCAT angles correct (CT without weight-bearing, radiographs with potential inaccuracies projection / position)

PedCAT potentially new standard for imaging of foot and ankle
References
