Outcomes Following Retrograde Intramedullary Nailing for Tibiototalocalcaneal (TTC) Arthrodesis

- John G Anderson MD
- Donald R Bohay MD
- John D Maskill MD
- Paul D Butler MD
- Jessica Hooper MD
- Derek Axibal MD
- Michelle A Padley BS
- Lindsey Behrend BS

1Orthopedic Associates of Michigan
2Grand Rapids Medical Education Partners
3Michigan State University College of Human Medicine
Outcomes Following Retrograde Intramedullary Nailing for Tibiotalocalcaneal (TTC) Arthrodesis

All disclosures are in the Final AOFAS Mobile App

The potential conflicts of interest with this presentation are:

- John G Anderson MD1 - Consultant: Stryker, Biomet, BESPA
- Donald R Bohay MD1 - Consultant: Stryker, Biomet, BESPA
- John D Maskill MD1 - None
- Paul D Butler MD2 - None
- Jessica Hooper MD3 - None
- Derek Axibal MD3 - None
- Michelle A Padley BS1 - None
- Lindsey Behrend BS1 - None

1Orthopedic Associates of Michigan
2Grand Rapids Medical Education Partners
3Michigan State University College of Human Medicine
Background

Tibiotalocalcaneal (TTC) arthrodesis is a treatment option for patients with severe ankle and subtalar arthropathy

- Arthropathy secondary to:
 - Trauma, infection, ischemia, loss of innervation (Charcot)
- Failed previous procedures:
 - Total ankle arthroplasty, ankle fusion, ORIF, Charcot reconstruction
 - Complications higher in revision cohorts

Goal of TTC arthrodesis = restore alignment, length, and stability

- Multiple fixation options:
 - Multiple crosses screws
 - Blade plate
 - Locked periarticular plates
 - Retrograde Intramedullary nail

An alternative treatment option for many of these patients is below knee amputation, especially when being used as a revision surgery.
Purpose

Assess the efficacy of retrograde intramedullary nailing in high risk TTC arthrodesis

Methods

• IRB approval for retrospective case series analysis
• 16 patients were identified who underwent TTC arthrodesis with retrograde intramedullary nailing between 2008 and 2011
• Blinded clinical data base was developed from clinical as well as radiographic documentation
Demographics

- 16 patients: 9 female, 7 male
- Mean age 58.25 years (range 35-77)
- **15/16** had TTC as revision procedure
 - 8/15 prior ankle, subtalar, or TTC fusion
 - 4/15 prior total ankle arthroplasty
 - 2/15 prior Charcot reconstruction
 - 1/15 prior ORIF
- Mean length of follow up 26.4 months (range 9.96-57.6)
- Social Factors
 - 9/16 had current or past tobacco history
 - 8/16 had history of Anxiety/Depression
- Medical Co-morbidities
 - Mean BMI 37.67 (+/- 6.93)
 - 5/16 Morbidly obese BMI 40+
 - 3/16 Diabetes Mellitus
 - 3/16 Charcot Neuropathy
- **4/16** - History of prior infection
 - Wound infection following total ankle arthroplasty
 - Infected tibial nonunion w/ antibiotic bead
 - Infected nonunion of ankle arthrodesis
 - Lateral ankle ulcer
Procedure

- Variable approaches to tibiotalar and subtalar joints based upon pathology of revision surgery
- 5 patients received a femoral head allograft to assist with restoration of length and alignment
- 2 brands of retrograde intramedullary TTC nails were used (surgeon preference), both systems allowed for internal compression of the arthrodesis sites during locking screw placement

<table>
<thead>
<tr>
<th>Outcomes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Time to Maximum Benefit</td>
<td>16.92 Months</td>
</tr>
<tr>
<td>Patient Stated “Satisfaction” at Most Recent Follow-up</td>
<td>15/16 patient</td>
</tr>
<tr>
<td>Post-operative Infections</td>
<td>7/16 patients</td>
</tr>
<tr>
<td>Post-operative Amputations</td>
<td>6/16 patients</td>
</tr>
<tr>
<td>Stable Ankle/Hindfoot at Most Recent Follow-up</td>
<td>10/10 Non-amputation Patients</td>
</tr>
</tbody>
</table>
Regardless of complications, pain scores at final follow-up still statistically improved from 5.7 to 0.9
Outcomes

- Pre-operative Variables
 - Diabetes – All 3 infected and amputated
 - Charcot – All 3 amputated
 - Tobacco History – 3 of 9 amputated
 - Anxiety/Depression – 4 of 8 amputated
 - Morbid Obesity (BMI 40+) – 2 of 5 amputated
 - Pre-op infection history in ipsilateral LE – 3 of 4 amp
 - Additional patient with chronic sacral ulcers resulted in amputation

- Medical Co-Morbidities
 - >3 Co-morbidities
 - 6 of 9 amputated
 - >7 Co-morbidities
 - 3 of 3 infected and subsequently amputated
Outcomes

• Indication
 • Primary Arthrodesis – successful fusion
 • Failed Total Ankle Arthroplasty – 2 of 4 amputated
 • Revision Arthrodesis – 3 of 8 resulted in amputation
 • Charcot Reconstruction Revision – 2 of 2 resulted in amputation
 • Additionally, 1 revision arthrodesis developed Charcot arthropathy and resulted in amputation

• Operative Variables
 • Bone stimulator – 3 of 7 amputated
 • Femoral Head Allograft – 2 of 5 amputated

• Post-operative Indicators
 • Post-operative Infection – 5 of 7 ultimately resulted in amputation
Discussion

- TTC Arthrodesis with Retrograde Intramedullary Nail (Primary and Revision cohorts)
 - Stable lower extremity – 81-95%
 - High complication rate - >50%
 - Low amputation rate – 0-10%

- RAIN (Retrograde Arthrodesis Intramedullary Nail) database
 - Amputation risk after TTC arthrodesis (179 limbs)\(^6\)
 - Identified age, diabetes, revision surgery and pre-operative ulcers as increased risk
 - Equation not applicable to high risk patients
 - Revision TTC arthrodesis (23 patients)\(^7\)
 - Stable functional limb – 70%
 - Amputation rate – 21.7%
Conclusions

• TTC arthrodesis with a retrograde IMN as a revision procedure has a higher amputation rate than primary arthrodesis

• Diabetes, Charcot arthropathy and ≥3 medical co-morbidities increases amputation risk

• Patients who avoid amputation are satisfied with procedure and commonly progress to a stable lower extremity
References

The Authors would like to gratefully acknowledge the invaluable assistance of Grand Rapids Medical Education Partners and the staff of Alan Davis, PhD.