Intramedullary Fixation in Severe Charcot Osteo-Neuroarthropathy with Foot Deformity Results in Adequate Correction without Loss of Correction

Richter M¹, Mittlmeier T², Rammelt S³, Agren PH⁴, Hahn S¹, Eschler A²

1 Department for Foot and Ankle Surgery, Sana Hospital Rummelsberg and Nuremberg, Germany
2 Department of Trauma, Hand and Reconstructive Surgery, Rostock University Medical Center, Germany
3 University Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus, Dresden, Germany
4 Stockholms Fotkirurgklinik, Queen Sophia Hospital, Stockholm, Sweden
Intramedullary Fixation in Severe Charcot Osteo-Neuroarthropathy with Foot Deformity Results in Adequate Correction without Loss of Correction

My disclosure is in the Final AOFAS Mobile App

I have no potential conflict with this presentation.
Midfoot Fusion Bolt (MFB)

- Intramedullary fixation principally more stable than peripheral fixation, for example proximal femoral fractures, tibiotalocalcaneal (TTC) arthrodesis
- Compression possible
- NO rotational stability of single MFB
Multicenter study (Level III)

- 3 centers (N, Rostock, Dresden)
- Age ≥ 18 years
- Inclusion period 2009 - 2013
- Inclusion criteria = neuropathy + deformity / instability + operative correction
- Localisation Sanders
- Stadium Eichenholtz / Sella & Barette
- Radiographic angles pre-/postop/FU
- Therapy failure
- Adverse events
Radiographic angles

Radiographs WITH weight bearing

- TMT dp
- TMT lateral
- Calc - MT 5
MFB Implantation

Introduction

Methods

Results

Conclusions
Results (Level III)

- n=47 pat. (n=48 feet; Rummelsberg: n=28; Rostock: n=13; Dresden: n=6)
- Age 60.1 Jahre; male 59.6%
- Diabetes mellitus n=38 (80.9%)
- Localisation Sanders II 100%
- Eichenholtz I n=26 (54.2%)
- Sella & Barette III n=34 (70.8%)
- 3 MFB n=27 (56.2%)
- 2 MFB n=6 (12.5%)
- 1 MFB n=15 (31.3%)
- Gastroc-slide n=28 (58.3%)
Adverse events / failure

- Adverse events n=30 pat. (63.8%)
 - Wound healing problems 21%
 - Reulceration 13%
- Treatment failure n=8 (16.7%)
 - Revision loss of correction n=3 (6%)
 - Amputation n=5 (2 Major/3 foot l.)
Angles

Introduction

Methods

Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time</th>
<th>Mean (°)</th>
<th>Range (°)</th>
<th>Change (°)</th>
<th>p (paired t-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre- versus postoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{lat}</td>
<td>Pre-OP</td>
<td>-11.42</td>
<td>-40 - -5</td>
<td>5.81</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Post-OP</td>
<td>-5.71</td>
<td>-10 - -3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{dp}</td>
<td>Pre-OP</td>
<td>-17.27</td>
<td>-47 - -6</td>
<td>6.90</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Post-OP</td>
<td>-10.55</td>
<td>-23 - -4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal-5</td>
<td>Pre-OP</td>
<td>164.9</td>
<td>142 - 180</td>
<td>-6.55</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Post-OP</td>
<td>158.0</td>
<td>146 - 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative versus last follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{lat}</td>
<td>Pre-OP</td>
<td>-11.42</td>
<td>-40 - -5</td>
<td>5.77</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>-5.65</td>
<td>-11 - -4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{dp}</td>
<td>Pre-OP</td>
<td>-17.27</td>
<td>-47 - -6</td>
<td>7.43</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>-10.02</td>
<td>-16 - -5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal-5</td>
<td>Pre-OP</td>
<td>164.9</td>
<td>142 - 180</td>
<td>-3.77</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>161.1</td>
<td>142 - 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative versus last follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{lat}</td>
<td>Post-OP</td>
<td>-5.71</td>
<td>-10 - -3</td>
<td>0.14</td>
<td>0.654</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>-5.65</td>
<td>-11 - -4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT \text{dp}</td>
<td>Post-OP</td>
<td>-10.55</td>
<td>-23 - -4</td>
<td>0.49</td>
<td>0.318</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>-10.02</td>
<td>-16 - -5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal-5</td>
<td>Post-OP</td>
<td>158.0</td>
<td>146 - 179</td>
<td>3.21</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Last follow-up</td>
<td>161.1</td>
<td>142 - 179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Followup (mean 12 months)

- All angles improved pre- versus postoperatively, and preoperatively versus last follow-up. The angles did not change postoperatively versus follow-up except calcaneo-5th metatarsal angle -> Adequate correction without loss of correction (94%)

- Pseudarthrosis/non-union rate 2%
Followup (mean 12 months)

- Treatment failure correlated with
 - Implantation ONLY 1 MFB
 - NO Gastroc-slide

- Loss of correction correlated with
 - Implantation ONLY 1 MFB
Charcot - MFB

Introduction

Methods

Results

Conclusions

- n=48, mean FU 12 months
- High overall morbidity
- Adequate correction without loss of correction (94%)
- Pseudarthrosis rate 2%
- 2 or 3 MFB necessary, best results with 3 MFB
- 1 MFB NOT enough
- Gastroc-slide useful