Evaluation of Lisfranc Joint Reduction Using Motion Tracking Software with Varying Clamp Positions

AUTHORS:
AMANDA FANTRY, MD
HEATHER GOTHA, MD
SARATH KORUPROLU, PHD
CRAIG LAREAU, MD
NO CONFLICT TO DISCLOSE

Evaluation of Lisfranc Joint Reduction Using Motion Tracking Software with Varying Clamp Positions

Amanda Fantry, MD
Heather Gotha, MD
Sarath Koruprolo, PhD
Craig Lareau, MD

My disclosure is in the Final AOFAS Mobile App.

I have no potential conflicts with this presentation.
Purpose

- Unstable Lisfranc injuries require open reduction to restore the anatomic relationship between the second metatarsal base and medial cuneiform
- No study has identified the ideal clamp position in ligamentous Lisfranc injuries
Purpose

- To evaluate the clamp position and force vector that would most accurately restore the normal anatomy
- To determine if fluoroscopic evaluation and clinical assessment of the reduction was adequate
Methods

- Computer navigation system used to evaluate reduction of Lisfranc joint
- 9 fresh frozen cadaveric feet
- Markers placed in 2nd metatarsal and medial cuneiform
Methods

- Ligaments between 2nd metatarsal base and medial/middle cuneiforms sectioned
- 1st tarsometatarsal and intercuneiform ligaments preserved
- Lisfranc joint reduced using pointed reduction clamp in 6 formations
 - 2nd or 3rd metatarsal base
 - Dorsal, midpoint, or plantar medial cuneiform
Statistical Analysis

- Reduction evaluated clinically by assessment of dorsal surface
- Navigation software used to measure the rotation and translation of 2nd MT to medial cuneiform
- One way ANOVA used to compare magnitude of translation
Results

- No statistically significant difference in rotation or translation of 2nd metatarsal to medial cuneiform
- Clamp configuration between 2nd or 3rd metatarsal and plantar cuneiform with less gross translation compared to mid and dorsal cuneiform, although not significant (p=0.491)
Magnitude of Translation (mm) with Clamp Position on the Medial Cuneiform

- Dorsal clamp
- Mid clamp
- Plantar clamp
Comparison of Clamp Positions

<table>
<thead>
<tr>
<th></th>
<th>Rz (internal rotation)</th>
<th>Ry (pronation)</th>
<th>Rx (dorsiflexion)</th>
<th>X (lateral)</th>
<th>Y (anterior)</th>
<th>Z (superior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact vs. 2nd Dorsal</td>
<td>0.636</td>
<td>0.904</td>
<td>0.574</td>
<td>0.249</td>
<td>0.395</td>
<td>0.935</td>
</tr>
<tr>
<td>Intact vs. 3rd Plantar</td>
<td>0.672</td>
<td>0.52</td>
<td>0.782</td>
<td>0.957</td>
<td>0.758</td>
<td>0.217</td>
</tr>
<tr>
<td>Intact vs. 3rd Dorsal</td>
<td>0.71</td>
<td>0.817</td>
<td>0.867</td>
<td>0.249</td>
<td>0.373</td>
<td>0.563</td>
</tr>
<tr>
<td>Intact vs. 2nd Mid</td>
<td>0.744</td>
<td>0.904</td>
<td>0.812</td>
<td>0.561</td>
<td>0.609</td>
<td>0.959</td>
</tr>
<tr>
<td>Intact vs. 2nd Plantar</td>
<td>0.795</td>
<td>0.533</td>
<td>0.82</td>
<td>0.847</td>
<td>0.719</td>
<td>0.457</td>
</tr>
<tr>
<td>Intact vs. 3rd Mid</td>
<td>0.841</td>
<td>0.899</td>
<td>0.985</td>
<td>0.172</td>
<td>0.889</td>
<td>0.374</td>
</tr>
</tbody>
</table>

- p-values for comparisons in clamp position in all rotations and translations demonstrate no statistically significant difference between groups
Discussion

- Accuracy of Lisfranc reduction not affected by clamp position on the medial cuneiform
- However, global translation was lowest with 2nd metatarsal and plantar cuneiform positioning
- Gross inspection of dorsal TMT joint and intraoperative fluoro are sufficient for evaluating reduction
References