Efficacy and Safety of Sublingual Sufentanil for the Management of Acute Pain Following Bunionectomy

Neil Singla, MD¹, Derek Muse, MD², Karen DiDonato, MSN, RN³ and Pamela Palmer, MD, PhD³

¹Lotus Clinical Research, Pasadena, CA; ²Jean Brown Research, Salt Lake City, UT; ³AcelRx Pharmaceuticals, Redwood City, CA
Efficacy and Safety of Sublingual Sufentanil for the Management of Acute Pain Following Bunionectomy

Karen DiDonato, MSN, RN

My disclosure is in the final AOFAS Mobile App.

I have a potential conflict with this presentation due to:
Employee of AcelRx Pharmaceuticals
Introduction

• Pain in the immediate post-operative period remains a primary concern of those considering surgery, and with HCAHPS surveys now being implemented at the level of Ambulatory Surgery Centers,¹ appropriate and timely management of pain has become not just a clinical goal, but a business necessity.

• There remains a need for rapid-acting, potent analgesics that do not require an invasive route of delivery and possess a predictable off-set, specifically for minor surgery patients appropriate for same-day discharge.

• A sufentanil tablet dosed sublingually by a healthcare professional (HCP) via a single-dose applicator is under development for treatment of moderate-to-severe acute pain in a medically supervised setting.

Introduction (Cont)

• The product is designed to leverage sufentanil’s unique PK characteristics and could offer potential analgesic advantages in an ambulatory care or acute trauma setting.

• Sufentanil possesses a high therapeutic index in animal models (>26,000 vs 71 for morphine) and as a result of its lipophilic nature, demonstrates rapid equilibration between plasma and CNS ($t_{1/2 ke0} = 6$ min vs. 2.8 hrs for morphine).³⁴.

<table>
<thead>
<tr>
<th>Common Opioids</th>
<th>Therapeutic Index</th>
<th>$t_{1/2 ke0}$ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>71²</td>
<td>168³*</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>232⁵</td>
<td>46⁶</td>
</tr>
<tr>
<td>Meperidine</td>
<td>5²</td>
<td>10⁶</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>277²</td>
<td>6.6⁴</td>
</tr>
<tr>
<td>Sufentanil</td>
<td>26,716²</td>
<td>6.2⁴</td>
</tr>
</tbody>
</table>

Objective

• The primary objective of this phase 2, double-blind, dose-finding study was to demonstrate the repeat-dose efficacy, safety and tolerability of sufentanil 20mcg [ST20] and 30mcg [ST30] sublingual tablets compared to placebo for the management of moderate-to-severe acute pain following bunionectomy surgery as determined by the time-weighted sum of pain intensity differences (SPID) to baseline over the 12-hour study period (SPID12).
 • Pain Intensity values were generated from a validated numerical rating scale (NRS) where 0 = no pain and 10 = worst possible pain.
Methods - Design

• This was a multi-center, randomized, double-blind, placebo-controlled trial for 12 hours in patients who were undergoing bunionectomy alone or with ipsilateral hammertoe repair under Mayo block local analgesia and IV sedation.

• Patients who met all eligibility criteria were randomly assigned at a 2:2:1 ratio to ST20, ST30 or placebo, administered sublingually prn to manage pain, but not more frequently than q1 hour.
 • Before study staff could administer the first dose of study drug, the patient must have reported a pain score of 4 or higher on an 11-point rating scale.

• Patients with inadequate analgesia were encouraged to remain in the study and were permitted access to rescue medication (Vicodin® [5 mg hydrocodone/500 mg acetaminophen]).
 • Rescue medication could only be administered after at least 10 minutes had passed since dosing with study drug and not more frequently than q4 hours.
Methods - Assessments

• The primary efficacy variable was the time-weighted summed Pain Intensity (PI) differences to baseline over the 12-h study period (SPID12), generated from a validated numerical rating scale (NRS) where 0 = no pain and 10 = worst possible pain.

• Key secondary efficacy variables included:
 • SPID over the first hour (SPID1)
 • Total pain relief over the 12-hour study period (TOTPAR12)
 • Time to perceived pain relief
 • Time to meaningful pain relief
 • Patient global assessment of method of pain control (PGA)
 • Use of rescue medication

• Safety assessments included vital signs, oxygen saturation, spontaneously reported adverse events (AEs) and the use of concomitant medications.
Results – Demographics and Disposition

• A total of 100 patients were randomized and received study drug (40 ST20, 40 ST30 and 20 PBO) and were included in the intent-to-treat (ITT) population.

• Baseline demographics were equally distributed across treatment arms with 91 (91%) patients completing the 12-hour study.
 • The mean age was 42.5 years with 96% of patients under age 65 years.
 • The most common reasons for early termination included lack of efficacy (6.0%) and adverse event (2.0%).
 • A higher proportion of patients in the ST30 group discontinued the study due to lack of efficacy (7.5%) than in the ST20 group (5.5%) and the placebo group (5.0%), but the differences were not statistically significant.
Results – Efficacy

• The ST30 group was superior to placebo (p = 0.003) for the time-weighted SPID12 with LS mean (SEM) scores of 6.53 (2.56) vs. -7.12 (3.64), respectively.

• For the time-weighted sum of PR scores over the 12h study period, there were statistically significant differences in favor of the ST30 group over placebo (9.73 [0.98] vs 4.37 [1.38], respectively; p = 0.002).

• Pain intensity differences compared to baseline for evaluation time points over the first hour of the study, demonstrated statistically significant differences as early as 30 minutes.

• Statistically significant differences favoring the ST30 compared to the ST20 were also observed for the time to perceived PR (p = 0.023) and time to meaningful PR (p = 0.010), with median times of 24 and 74 minutes, respectively. The placebo group never achieved either endpoint.
Results – Efficacy

Figure: Least Squares (LS) Mean of Time-weighted SPID by Evaluation Time Point (ITT Population)
Results – Efficacy

Pain Intensity Difference to Baseline in the First Hour
Safety

- Two patients (2.0%) prematurely discontinued the study due to AE: anxiety/chest pain (unrelated) and somnolence/respiratory depression (possibly related), both in the ST30 group.

- Two (2.0%) patients experienced SAEs, reported 8 days (severe osteomyelitis) and 11 days (moderate cellulitis) after the 12h study period, respectively. Neither were considered related.

- Nausea, vomiting, dizziness and somnolence were the most frequently reported AEs

<table>
<thead>
<tr>
<th></th>
<th>ST20</th>
<th>ST30</th>
<th>Placebo</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>14 (35%)</td>
<td>23 (57.5%)</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (15%)</td>
<td>11 (27.5%)</td>
<td>0</td>
<td>0.021</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3 (7.5%)</td>
<td>8 (20%)</td>
<td>1 (5%)</td>
<td>NS</td>
</tr>
<tr>
<td>Somnolence</td>
<td>2 (5%)</td>
<td>8 (20%)</td>
<td>0</td>
<td>0.027</td>
</tr>
<tr>
<td>Pruritus</td>
<td>2 (5%)</td>
<td>3 (7.5%)</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Feeling hot</td>
<td>3 (7.5%)</td>
<td>1 (2.5%)</td>
<td>0</td>
<td>NS</td>
</tr>
</tbody>
</table>
Conclusions

- The sublingual sufentanil 30mcg tablet was the dosage strength that was associated with the largest reduction in pain intensity in this study of bunionectomy surgery patients.
- The median time to perceived pain relief for the 30 mcg dose was 24 minutes; more rapid than the 20 mcg dose or placebo.
- The type and frequency of adverse events observed were typical of opioids in a post-operative setting with reports of nausea, vomiting and somnolence more common in the active drug cohorts.
- Additional studies of sublingual sufentanil 30 mcg are indicated to assess efficacy and tolerability in broader patient populations.