Effect of a Calcaneal Osteotomy in a Novel Asymmetric Ankle Arthritis Model

Jack Anavian, MD*
Heather E. Gotha, MD
Todd A. Fellars, MD
Sarath C. Koruprolu, MS
Ryan R. Rich
David J. Paller, MS, MBA
Christopher W. DiGiovanni, MD

Department of Orthopaedic Surgery
Brown University Medical School
Disclosures

- Jack Anavian, MD – none
- Heather E. Gotha, MD – none
- Todd A. Fellars, MD – none
- Sarath C. Koruprolu, MS – none
- Ryan R. Rich – none
- David J. Paller, MS, MBA – none

Ours disclosures are in the Final AOFAS Mobile App, we have no potential conflicts with this presentation
Background

- In patients with asymmetric ankle arthritis, ankle realignment surgery with a calcaneal displacement osteotomy has shown promising but variable clinic results.

- The effects of a calcaneal osteotomy remain poorly understood from a biomechanical standpoint.
 - Prior studies have failed to adequately recreate an in-vitro model of asymmetric ankle arthritis.
 - Biomechanical explanations for the effects of realignment surgery have yet to be elucidated.
Purpose

- In this study, we employ a novel cadaveric asymmetric ankle arthritis model in order to better elucidate the effect of a calcaneal displacement osteotomy, with and without a fibular osteotomy, on ankle joint contact pressures.

- We hypothesize that this asymmetric ankle arthritis model will result in a shift in the center of pressure (COP) and that a corrective calcaneal osteotomy will reduce this shift.
Methods

- 12 paired cadaveric leg specimens were axially loaded to simulate a single leg stance up to 700N

- Baseline intra-articular pressure (COP) and contact area measurements were obtained via pressure sensors (Tekscan) in the native specimens
Methods

- A varus (6 right-sided specimens) or valgus (6 left-sided specimens) deformity model simulating stage IV asymmetric ankle arthritis was designed for all specimens
 - Partial ligamentous release
 - Eccentric removal of cartilage (50%) from both the tibial plafond and the talus
- Specimens were then reloaded to 700N and intra-articular pressure (COP) and contact area measurements were reassessed
Methods

- Realignment was, thereafter, created with a lateral (right-sided specimens) or medial (left-sided specimens) calcaneal displacement osteotomy (1 cm)
- The specimens were then reloaded and pressure (COP) and contact areas reassessed
- The above protocol was repeated after a fibular osteotomy to assess the effect of an intact fibula
- A paired t-test was performed to determine the effect of a concomitant fibular osteotomy
Results

- **Varus Arthritis Model**
 - After creation of the arthritis model there was a mean COP of 4.4 ± 1.9mm in a posterior and medial direction
 - A lateral displacement calcaneal osteotomy caused a mean COP shift of 5.6 ± 2.8mm in an anterior and lateral direction
 - A lateral displacement calcaneal osteotomy + fibular osteotomy caused a mean COP shift of 5.2 ± 2.8mm in an anterior and lateral direction

- **Valgus Arthritis Model**
 - After creation of the arthritis model there was a mean COP of 5.4 ± 2.0mm in an anterior & lateral direction
 - A medial displacement calcaneal osteotomy caused a mean COP shift of 5.7 ± 2.1mm in an anterior and lateral direction
 - A medial displacement calcaneal osteotomy + fibular osteotomy caused a mean COP shift of 5.1 ± 0.8mm in an anterior and lateral direction

<table>
<thead>
<tr>
<th>Mean Center of Pressure Shift</th>
<th>Varus Model</th>
<th>Valgus Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magnitude (mm)</td>
<td>Direction</td>
</tr>
<tr>
<td>Arthritis Model</td>
<td>4.4 ± 1.9</td>
<td>Posteromedial</td>
</tr>
<tr>
<td>After Calcaneal Osteotomy</td>
<td>5.6 ± 2.8</td>
<td>Anterolateral</td>
</tr>
<tr>
<td>After Calcaneal + Fibular Osteotomy</td>
<td>5.2 ± 2.8</td>
<td>Anterolateral</td>
</tr>
<tr>
<td>t-test (effect of fibular osteotomy of COP shift)</td>
<td>p=0.063</td>
<td></td>
</tr>
</tbody>
</table>
Results

- According to the paired t-test, presence of concomitant fibular osteotomy did not have a significant effect on the COP shift for both the varus ($p=0.063$) and valgus ($p=1.000$) arthritis models.

<table>
<thead>
<tr>
<th>Mean Center of Pressure Shift</th>
<th>Varus Model</th>
<th>Valgus Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magnitude (mm)</td>
<td>Direction</td>
</tr>
<tr>
<td>Arthritis Model</td>
<td>4.4 ± 1.9</td>
<td>Posteromedial</td>
</tr>
<tr>
<td>After Calcaneal Osteotomy</td>
<td>5.6 ± 2.8</td>
<td>Anterolateral</td>
</tr>
<tr>
<td>After Calcaneal + Fibular Osteotomy</td>
<td>5.2 ± 2.8</td>
<td>Anterolateral</td>
</tr>
<tr>
<td>t-test (effect of fibular osteotomy of COP shift)</td>
<td>p=0.063</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- The creation of asymmetric arthritis in cadaveric ankle specimens caused a shift in the intra-articular COP
- In a varus model, the COP shifted in a posteromedial direction; in a valgus model, the COP shifted in an anterolateral direction
- Corrective displacement calcaneal osteotomy appeared to reduce this COP shift in the varus arthritis model, but resulted in a paradoxical shift in an anterior and lateral direction in the valgus model
- Concomitant fibular osteotomy exhibited no significant effect on COP position in either model
- A larger sample size is needed to determine the significance of these findings

