COFAS Multicenter Study Comparing Ankle Replacement and Ankle Fusion:
The effect of Ipsilateral peri-articular deformity and arthritis on Mid-term outcome

Murray J. Penner, MD, FRCSC
Kevin J. Wing, MD, FRCSC
Alastair S.E. Younger, MD, FRCS
Mark A. Glazebrook, MD, FRCSC
Peter J. Dryden, MD, FRCSC
Hubert Wong, PhD
Timothy R. Daniels, MD, FRCSC
Disclosures

• The authors’ disclosures are in the Final AOFAS Mobile App.

• The authors may have a potential conflict with this presentation due to:

 – Research financial support from:
 • Integra, Biomimetics, Cartiva, J&J DePuy, Acumed
 – Consultancy
 • Integra, Wright, Arthrex, Acumed
 – Royalty
 • Wright
Introduction

- Ankle fusion (AF) and Replacement (TAR) are accepted treatments for end stage ankle arthritis (ESAA).

- While AF is reliable, TAR is often preferred by patients.

- Recently, COFAS presented the largest mid- to long-term prospective comparison of AF and TAR:
 - Outcomes were comparable at 5.5 yrs mF/U
 - But not stratified for any patient factors.
Introduction

• Potentially important factors include ipsilateral:
 – Intra-articular deformity
 – Significant foot deformity
 – Hindfoot arthritis (or prior fusion)

• When present, increasingly complex reconstruction techniques are required

• But the effect of increasingly complex arthritis and reconstruction, as stratified by the COFAS Classification*, on outcome is unknown

Purpose & Hypotheses

Determine if:

1. Outcomes for TAR & AF differ between COFAS ankle types

2. Outcomes differ between TAR & AF for ankles of the same COFAS type
Methods

• Prospective non-randomized multicenter data (5 sites, 7 surgeons) from the COFAS database

• Study received ethics approval at all sites

• Inclusion criteria:
 – Informed study consent
 – Skeletal maturity
 – 1° TAR (mobile bearing) or AF
 – Completed pre-op data set
 – Completed post-op data set, minimum 2 year FU

• Exclusion criteria:
 – Hx of active or prior infection
 – Charcot arthropathy
 – Significant talar osteonecrosis
Methods

• Primary Outcome:
 – Ankle Osteoarthritis Scale (AOS)
 • Total of Pain & Disability Sections

• Secondary Outcome:
 – COFAS Complication Rate
Methods

Stratify by COFAS Post-op Classification

<table>
<thead>
<tr>
<th>COFAS Type</th>
<th>Non-Complex Types</th>
<th>Complex Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PRE-OP Classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated ESAA</td>
<td>ESAA with: Ankle varus/valgus >10°, instability, or equinus</td>
<td>ESAA with: Tibial or HF or MF deformity</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POST-OP Classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated AF or TAR</td>
<td>AF or TAR with: ST procedure requiring 2nd incision</td>
<td>AF or TAR with: Osteotomoy or MF fusion</td>
</tr>
<tr>
<td>Ligament recon or release, TAL, GSR,</td>
<td>Ligament recon or release, TAL, GSR,</td>
<td>Ligament recon or release, TAL, GSR,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjunct Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament recon or release, TAL, GSR,</td>
<td>Ligament recon or release, TAL, GSR,</td>
<td>Ligament recon or release, TAL, GSR,</td>
</tr>
<tr>
<td>Calc, or tibial osteotomy; MF fusion</td>
<td>Calc, or tibial osteotomy; MF fusion</td>
<td>Calc, or tibial osteotomy; MF fusion</td>
</tr>
<tr>
<td>ST, TN, CC or Triple fusion</td>
<td>ST, TN, CC or Triple fusion</td>
<td>ST, TN, CC or Triple fusion</td>
</tr>
</tbody>
</table>
Results

535 Cases
4.0 Yr FU

- Trend for TAR 3&4 slightly better Post-op than AF 3&4 (p=0.10)
- Trend for TAR 1-4 slightly better Post-op than AF 1-4 (p=0.10)
Results

<table>
<thead>
<tr>
<th></th>
<th>Fusion 1&2</th>
<th>TAR 1&2</th>
<th>Fusion 3&4</th>
<th>TAR 3&4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>55.8</td>
<td><< 66.2</td>
<td>51.9</td>
<td><< 63.0</td>
</tr>
<tr>
<td>Diabetes %</td>
<td>10.9</td>
<td>> 6.6</td>
<td>11.1</td>
<td>> 4.7</td>
</tr>
<tr>
<td>Inflam Arthritis %</td>
<td>8.8</td>
<td>< 15.4</td>
<td>13.0</td>
<td>< 27.1</td>
</tr>
<tr>
<td>Revision %</td>
<td>1.5</td>
<td><< 8.1</td>
<td>0</td>
<td><< 4.7</td>
</tr>
<tr>
<td>Amputation %</td>
<td>0</td>
<td>0.4</td>
<td>3.7</td>
<td>>> 0.9</td>
</tr>
<tr>
<td>Tot complic cases %</td>
<td>1.5</td>
<td><< 10.3</td>
<td>5.6</td>
<td>< 11.2</td>
</tr>
</tbody>
</table>

- TAR pts:
 - were a decade older (p<0.05)
 - Had diabetes less frequently
 - Had inflammatory arthritis much more commonly

- Complications requiring reoperation were more common in TAR and Types 3&4
 - Aseptic revision more common in TAR
 - BUT, Amputation more common in Fusion, particularly Types 3&4 (non-septic)
Conclusion

• At mean 4 yr FU, both TAR and AF result in significant outcome improvement for all types of arthritis

• Complex (Types 3&4) Fusions have somewhat worse outcomes than Non-Complex (Types 1&2) Fusions (NS), while this difference is not present with TARs

• TAR outcomes slightly better (NS) than AF in both Complex and Non-Complex arthritis despite:
 – Pt age greater by a decade
 – a much higher incidence of inflammatory arthritis

• TAR has a higher complication rate, but notably lower amputation rate in Types 3&4
References

