Characterization of Plantaris Tendon Constructs for Ankle Ligament Reconstruction

J. Benjamin Jackson III MD, Matthew T. Philippi BS, Christopher W. Kolz BS
Thomas Suter MD, and Heath B. Henninger PhD

Harold K. Dunn Orthopaedic Research Laboratory,
University Orthopaedic Center, University of Utah, Salt Lake City, UT, USA
Disclosures can be found in the AOFAS Mobile App.

No authors on the present study have any conflicts of interest pertinent to the work presented herein.
Clinical Questions

- What is the biomechanical strength of the plantaris tendon?
- Does it have enough tensile strength to be considered for ligament reconstruction in the foot and ankle?
Specific Aims

- Evaluate the ability to harvest the plantaris tendon through minimally invasive techniques
- Evaluate the biomechanical properties of the plantaris tendon
Methodology

- 35 plantaris tendons harvested from fresh-frozen cadaver specimens
 - 5 pairs, 25 individual
 - Avg. age 66 years [range, 43-89 years]
 - 17 female, 13 male
- Tendons harvested using tendon stripper
Methodology

- Single, Double and Quadruple constructs
- 20 mm functional length
- Ends sutured in running locking technique
- Tendon woven on template board
- Suture passed transversely to secure construct bundle
Collagen fibers aligned along test axis
- 300 μm fiducial markers used with video to monitor applied strain
- Instron used for cyclic and failure uniaxial tensile testing with 1 kN load cell
- 0.05 MPa preload stress applied to construct for 5 minutes.
- 10 cycles of 8% clamp-to-clamp strain
- Test to failure at 1mm/s clamp displacement
Results

- Minimally-invasive technique
 - Able to harvest 7 of 9 with tendon stripper
 - Average length incision was 2.9 cm (range 2.5-3.5 cm)
 - 2 tendons found with extension of incision
Results

Plantaris Tendon Material Properties.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ultimate Stress, MPa</th>
<th>Ultimate Strain, %</th>
<th>Modulus of Elasticity, MPa</th>
<th>Hysteresis, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>19.2 ± 7.0</td>
<td>3.7 ± 1.9</td>
<td>1271.8 ± 622.2</td>
<td>19.9 ± 4.5</td>
</tr>
<tr>
<td>Bohnsack et al⁶ (single)</td>
<td>—</td>
<td>11.0 ± 2.8³</td>
<td>377.6 ± 144.4³</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>28.0 ± 6.8</td>
<td>442.5 ± 102.7</td>
<td>—</td>
</tr>
</tbody>
</table>

Values are presented as mean ± SD. —, no data available.
³Present study as measured based on Bohnsack et al.⁶

Plantaris Construct Structural Properties.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Cross-Sectional Area, mm²</th>
<th>Peak Load at 8% Clamp Strain, N</th>
<th>Stiffness, N/mm</th>
<th>Tensile Strength, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadruple</td>
<td>10.9 ± 4.1⁵,⁶</td>
<td>94.6 ± 32.2⁵,⁶</td>
<td>133.1 ± 46.3⁵,⁶</td>
<td>205.8 ± 68.2⁵,⁶</td>
</tr>
<tr>
<td>Double</td>
<td>3.8 ± 2.5</td>
<td>47.8 ± 22.6</td>
<td>53.2 ± 28.4</td>
<td>78.4 ± 50.1</td>
</tr>
<tr>
<td>Single</td>
<td>3.9 ± 1.8</td>
<td>39.9 ± 12.1</td>
<td>43.8 ± 14.7</td>
<td>66.9 ± 26.3</td>
</tr>
<tr>
<td>Bohnsack et al⁶ (single)</td>
<td>2.1 ± 0.8</td>
<td>—</td>
<td>42.6 ± 12.9</td>
<td>93.8 ± 14.9</td>
</tr>
</tbody>
</table>

Values are presented as mean ± SD. —, no data available.
⁵Significantly greater than a single strand of the same tendon (P ≤ .001).
⁶Significantly greater than for an independent double construct (P ≤ .005).
Results

Tensile Strength

Newtons

0 50 100 150 200 250 300 350 400 450

Single Double Intact ATFL Attarian\(^1\) Intact ATFL Waldrop\(^2\) Quadruple Intact CFL Attarian\(^1\)
Conclusions

- Plantaris has tensile strength greater than that of ATFL when quadrupled
- Accessible through minimally invasive approach with limited morbidity
- High tensile strength to size ratio

