Characterization of patient specific contact pressures within the talar footprint of retrieved Agility total ankle arthroplasty tibial components

S. Matuszak MD; Z. Vaupel MD; E. Baker MS; T. Maerz BS; K. Baker MS; M. Kurdziel BS; M. Richardson-Frazzitta; P. Fortin MD

Beaumont Health System
AOFAS
July 13-16 2011
Characterization of patient specific contact pressures within the talar footprint of retrieved Agility total ankle arthroplasty tibial components

Sean Matuszak, MD

My disclosure is in the Final AOFAS Program Book.

I have no potential conflicts with this presentation.
Background

- DePuy Agility Total Ankle
 - Fixed bearing, semiconstrained
 - Oversized polyethylene articulation
 - Requires syndesmotic fusion

- Initial results promising\(^1\)

- Midterm results\(^2\)
 - Osteolysis and loosening

- Vaupel et al analyzed retrieved implants\(^4\)
 - Abrasion, pitting, dishing were identified as damage modes
Background

• “Talar Footprint” identified
 – Primary articulation of talar component
 – Most wear occurred at the edges of the “footprint”

• Previous studies analyzed pressure measurements with talar component allowed to freely articulate\(^3\)
Hypothesis

- Increased constraint of the unintentional ‘talar footprint’ leads to increased contact pressures, and therefore increased edge loading

- Edge loading at perimeter of ‘talar footprint’ defect accelerates polyethylene wear resulting in early failures of the Agility design

- In effect, the talar footprint induces a constrained articulation and increased contact pressures, which may lead to early device failure
Materials and Methods

- Testing was performed using 6 retrieved implants all demonstrating a talar footprint within the polyethylene insert
 - 1st generation (n=2); 2nd generation (n=2); 3rd generation (n=2)

- Talar and insert components were mounted to a custom-built testing fixture
 - Loading profiles were controlled by MTS software for an 858 Mini Bionix II materials testing machine

- Tekscan® ankle pressure sensor (model #5033) was positioned within the tibio-talar articulation footprint for data collection
Methods and Materials

- Axial loads applied in stepwise increments from one to six times actual patient body weight (collected from medical record review)
- Pressures recorded, mapped, and graphed at each body weight
Results

Representative contact pressure maps from mechanical testing, showing 1st, 2nd and 3rd generation Agility designs (L to R).

- Peak pressures averaged 2.02 to 10.70 MPa
- Contact pressures increased with increasing body weight
- Peak contact pressures occur along the perimeter of the device articulation in the footprint, most notably in the 2nd generation design (wedge-shaped talar component)
Results

Average Peak Pressures Per Body Weight Multiplier

- 1st Gen. BW 104 kg
- 1st Gen. BW 97.52 kg
- 2nd Gen. BW 90.72 kg
- 2nd Gen. BW 90.72 kg
- 3rd Gen. BW 62.2 kg
- 3rd Gen. BW 104.3 kg

Peak Pressure (MPa)

Body Weight Multiplier

Beaumont Hospitals®
Discussion

• Operative notes from each retrieved implant described loose components with osteolysis

• Measured peak forces illustrate the quantitative effects of the constrained articulation within the “talar footprint”

• Constrained articulation in vivo was unexpected, and these experiments seek to understand pathway to implant failure after “talar footprint” was established

• Measured peak pressures were near or greater than 10 MPa in multiple implants which is the industry limit for polyethylene

Beaumont Hospitals®
Conclusion

- Increased articulation constraint leads to increased contact pressures
- Increased contact pressures lead to increased wear and wear debris
- Increased wear and debris may ultimately lead to the early failure and osteolysis seen with the Agility total ankle system, especially in the anatomic locations described in literature4

