Arthroscopic Evaluation of Syndesmotic Malreduction and Stability in a Cadaveric Model

Douglas E. Lucas, DO; B. Collier Watson, DO; G. Alex Simpson, DO; Gregory C. Berlet, MD; Christopher F. Hyer, DPM

Advanced Orthopedic Foot and Ankle Fellowship
Orthopedic Foot and Ankle Center, Westerville, Ohio
Arthroscopic Evaluation of Syndesmotic Malreduction and Stability in a Cadaveric Model

Our disclosures are in the Final AOFAS Mobile App. There is a potential conflict with this presentation due to: This cadaveric study was funded by DJO Global.
Evaluation of Instability

- Clinical tests DO NOT identify partial disruption efficiently
- Radiographic parameters suffer from anatomic variability and depend on technique
- 4mm of syndesmotic diastasis must be present to reliably identify diastasis radiographically
- Ankle arthroscopy has been suggested to be 100% sensitive to partial syndesmotic injury
Syndesmotic Malreduction

- Post operative CT Incidence
 - Gardner, FAI 2006
 - 52% malreduction
 - Sanders, JOT 2012
 - Indirect technique – 44%
- Morbidity of Malreduction
 - Inferior functional outcomes scores
 - Inferior pain scores
- Current recommendations
 - Bilateral postoperative CT
 - Immediate revision if >2mm malreduction

Sanders, JOT 2012
Evaluation of Malreduction

- Radiographic parameters ineffective
 - Difficult to determine 2mm of malreduction
 - Anatomy has significant variability
 - Tib-fib clear space
 - Does not change with fibular rotation
 - (5 degrees ER to 25 degrees IR)
 - Marmor, FAI 2011
- Direct reduction techniques
 - Improve malreduction rates but 15-16% are still malreduced
- Intraoperative CT (O-arm)
 - Effective but...
 - Time consuming
 - Increases radiation exposure
 - Limited availability
- Ankle Arthroscopy
 - No current literature available
Purpose & Hypothesis

• Goal 1
 – Determine surgeon ability to diagnose partial syndesmotic disruption
• Goal 2
 – Determine what role arthroscopy may have in evaluating syndesmotic reduction
• Hypothesis 1
 – High sensitivity in recognizing partially disrupted syndesmosis
• Hypothesis 2
 – High sensitivity in recognizing sagittal plane malreduction
 – Low sensitivity to identify rotational malreduction
Methods & Materials

• Protocol 1 (Instability)
 – 2 groups (10 Specimens)
 • Group 1: Superficial dissection only
 • Group 2: Direct disruption of AITFL/IOL
 – Blinded surgeon evaluation

• Protocol 2 (Malreduction)
 – Complete disruption with subsequent fixation into 3 groups
 • Group 1: Anatomic
 • Group 2: 5mm sagittal plane
 • Group 3: 15 degrees IR or ER
 – Blinded surgeon evaluation
Results (Instability)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Surgeon 1 (90%)</th>
<th>Surgeon 2 (60%)</th>
<th>Ligament status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unstable</td>
<td>Unstable</td>
<td>Partial Disruption (PD)</td>
</tr>
<tr>
<td>2</td>
<td>Unstable</td>
<td>Stable</td>
<td>PD</td>
</tr>
<tr>
<td>3</td>
<td>Unstable</td>
<td>Stable</td>
<td>PD</td>
</tr>
<tr>
<td>4</td>
<td>Stable</td>
<td>Unstable</td>
<td>PD</td>
</tr>
<tr>
<td>5</td>
<td>Unstable</td>
<td>Unstable</td>
<td>PD</td>
</tr>
<tr>
<td>6</td>
<td>Stable</td>
<td>Unstable</td>
<td>Intact</td>
</tr>
<tr>
<td>7</td>
<td>Stable</td>
<td>Unstable</td>
<td>Intact</td>
</tr>
<tr>
<td>8</td>
<td>Stable</td>
<td>Stable</td>
<td>Intact</td>
</tr>
<tr>
<td>9</td>
<td>Stable</td>
<td>Stable</td>
<td>Intact</td>
</tr>
<tr>
<td>10</td>
<td>Stable</td>
<td>Stable</td>
<td>Intact</td>
</tr>
</tbody>
</table>
Results (Malreduction)

- **Sagittal**
 - % Correctly Diagnosed as Reduced: 100
 - % Malreduction Accurately Identified: 50

- **Internal Rotation**
 - % Correctly Diagnosed as Reduced: 50
 - % Malreduction Accurately Identified: 33

- **External Rotation**
 - % Correctly Diagnosed as Reduced: 50
 - % Malreduction Accurately Identified: 33

- **Anatomic**
 - % Correctly Diagnosed as Reduced: 17
 - % Malreduction Accurately Identified: 33
Conclusion

- Ankle arthroscopy for instability
 - 75% sensitive in identifying 2mm of diastasis with partial disruption model
 - May be a significant learning curve
 - May be a useful tool particularly in subtle instability where radiographs can not identify diastasis
- Ankle arthroscopy in ankle fractures
 - Ankle arthroscopy has been shown to be beneficial in identifying additional pathology at the time of primary repair
 - Syndesmosis instability
 - Cartilage injury/Subchondral impaction
 - Degenerative condition at injury
 - Loose bodies
 - Evaluation of articular reduction
 - Evolving role with further studies necessary for clear recommendations
Conclusion

• Ankle arthroscopy for evaluation of malreduction
 – Sagittal Plane
 • 100% Sensitive
 – Transverse plane
 • 50% Sensitive
• May be a useful tool for some surgeons but…
 – Technique dependent
 – Significant learning curve
 – Not standard of care
 – Questionable benefit when only 1 plane can reliably be identified
 – Needs further study
References