Anatomy of the insertion of the tibialis posterior tendon

C. Plaass¹, M. Fumy², L. Claassen¹, M. Ettinger¹, K. Daniilidis¹, M. Ochs², C. Stukenborg-Colsman¹, A. Schmiedl²

¹ Department of Foot & Ankle Surgery, Orthopedic Clinic, Hannover Medical School, Germany
² Institute for Functional and Applied Anatomy, Hannover Medical School, Germany
Disclosure

Anatomy of the insertion of the tibialis posterior tendon

Our disclosure is in the Final AOFAS Mobile App.

We have a potential conflict with this presentation due to:

- One or more of the authors are paid consultants or got financial support direct or to their institution by the following companies:

 Medartis®, DePuySynthes™, Albrecht©, Extremity Medical™, Stryker®, Arthrex®, Wrigth Medical®

- One or more of the authors are board members, of the following institutions:

 German Foot and Ankle Society
Background

► Function of the Posterior Tibial Tendon (PTT)
 ■ stabilize the hindfoot against valgus forces
 ■ dynamic support of foot arch
 ■ adduction of transverse tarsal joints
 → locking of the tarsal joints, hence foot becomes rigid lever during propulsive phase of gait

► Posterior Tibial Tendon Dysfunction (PTTD) can lead to
 ■ persistent pain
 ■ hindfoot eversion, and finally
 ■ flat foot deformity
Treatment of severe PTTD consists of tendon transfer using Flexor Hallucis Longus (FHL) or Flexor Digitorum Longus (FDL) tendon and fixation with

- tendon to bone by bone tunnel or anchor fixation
- suture to stump of PTT

Exact knowledge of tendon anatomy may help to find the most physiologic reconstruction
Method

- 29 embalmed cadavers = 58 feet
 - ♂ age: 83 (± 7.4) yrs
 - 17 female : 12 male
 - All caucasians

Dissection:

- Plantar aponeurosis and flexor digitorum brevis (FDB) lifted proximally, musculus abductor hallucis (ABH) distally
- Flexor hallucis longus with lumbricales and Flexor digitorum longus with M. quadratus plantae lifted distally
- Identify connections to M.flexor hallucis minimi and peroneus longus tendon
- Identify insertion to all bony, tendinous and ligamentary landmarks
Results

- PTT splits before inserting on tuberositas naviculare
 - sesamoid in 86% of the feet
 - anterior band (PTTab): inserts on naviculare and with some fibers on os cuneiforme medial
 - medial band (PTTmb): inserts on bones of the midfoot
 - posterior band (PTTpb): inserts on calcaneus and cuboid

- Diameter of PTT:
 - before splitting: 9.7 (± 1.4) mm
 - lateral part of PTT (PTTmb and PTTpb): 5.0 (± 1.1) mm
Results

► **Anterior band (PTTab):**

- inserts on tuberositas os naviculare
- insertion area on naviculare $72.7\, (\pm 18.0)\, \text{mm}^2$
- flatspread insertion to capsule of NC 1 and plantar aspect of cuneiforme mediale

► **posterior band (PTTpb):**

- inserts on cuboid and medial aspect of Calcaneus, including sustentaculum
- inserts on spring ligament in 3.4 %
- about 15 % of tendon width
Results

► Medial band (PTTmb)

- Represents with posterior stand approx. 50 % of tendon width
- Variable insertion on
 - Cuneiforme intermedium 100 %
 - Cuneiforme laterale 100 %
 - Base MT1 3.5 %
 - Base MT2 90 %
 - Base MT 3 97 %
 - Base MT 4 93 %
 - Base MT 5 93 %
Conclusion

► PTT splits into two nearly equal strong strands before insertion on os naviculare

► PTT has strong insertions into most bones of the mid- and hindfoot with low variability

► Considering the thickness of the lateral bands of the tendon, reconstruction of it during PTTD surgery should be considered

► Clinical comparative studies between reconstruction techniques are required to understand the clinical relevance
References

