An Anatomical Cadaveric Study
Comparing Medial vs. Plantar
Approach for FDL or FHL Tendon Harvest for PTTD Reconstruction

Mena Abdelmalak, BS, MBF
Umur Aydogan, MD

Penn State Hershey Medical Center
Penn State Bone and Joint Institute
Hershey, PA
NO CONFLICT TO DISCLOSE

• “An Anatomical Cadaveric Study Comparing Medial vs. Plantar Approach for Flexor Digitorum Longus (FDL) or Flexor Hallusis Longus (FHL) Tendon Harvest for Posterior Tibial Tendon Dysfunction (PTTD) Reconstruction”

• Mena Abdelmalak

• My disclosure is in the Final AOFAS Mobile App.

• I have no potential conflicts with this presentation.
Background

• Current classic surgical treatment utilizes either the FHL tendon or FDL tendon to assist in the reconstruction of PTTD

• Tendon graft is then attached to the navicular
 • Either reattaching the tendon to itself or using a screw anchor
Current Approach

• Current common approach is to make a medial incision up to the level of naviculocuneiform joint and obtain the graft.

• Problems:
 • Tendon grafts that are either
 • Too short in length to be secured onto themselves (tenodise)
 • Not long enough and requires to utilize a biotenodesis screw
 • Increasing the cost
 • Hard to tenodise the FDL distal stump to FHL which can cause a decrease in plantar flexion strength of toes.
New plantar approach for obtaining the tendon graft

- First described in 2012 by Amlang et al. (FAI)
- Has the potential to take longer grafts
- Can decrease the cost as can decrease the use of a bioteneodesis screw
Purpose

• Compare the two tendons, the two approaches, and the two methods of attachment in order to determine if there is a more superior tendon, approach and method

• Determine if there is a benefit in utilizing the plantar approach in the tendon transfer for PTTD reconstruction
Methodology

- Ten fresh frozen cadaver feet
- All feet underwent both medial and plantar approaches (n=10)
- Single incision at the level of naviculocuneiform joint for FHL and FDL harvest
 - Both tendons marked to indicate their respective lengths at the incision site
- Second incision was created 1 cm posterior to the first metacarpophalangeal joint, utilizing a direct plantar approach
Methodology

• Both tendons were cut at the level of the incision with tendon connections
 • Medial Plantar Nerve presence noted on each specimen
• Extraction of the two tendons was done through the initial incision
 • Allowing for tendon harvest and inserted into a bone tunnel created in the navicular bone
• Each tendon was measured for length on judge if was able to be utilized in a full reattachment to itself (tenodise) or if it required a screw anchor (biotendesis screw) for fixation
Results

• When comparing the length of the two tendons, the FHL was significantly (p<.0001, n=10) longer than the FDL
 • Average increased length of 11.10 mm and 11.70 mm for the medial and plantar approach respectively

• When comparing the two approaches, there was a significant increase in length of both tendon grafts with plantar approach
 • Average increase in length being 40.60 mm and 41.20 mm for the FDL and FHL respectively

• No significant difference between the two approaches if the screw anchor method is utilized (p= 0.2105 for FDL and p=0.04737)

• However, if attempting to suture the tendon to itself, the plantar approach provided a significant difference with both tendons (p< .0001 for FDL and p=.0007 for FHL).
Results (cont.)

![Tendon Length Comparing Approaches](chart.png)

- **FDL Length**
 - Medial
 - Plantar
- **FHL Length**
 - Medial
 - Plantar
Conclusions

- Based on the data, we conclude that utilizing the tendons from the plantar approach is more superior in PTTD reconstruction, whether the FHL or the FDL is used
- It provides the greatest length of tendon to be utilized in the repair
- It provides the highest likelihood for the tendon transfer without the utilization of a screw anchor
- Tenodesis can easily be done in the plantar approach, and may provide better functional outcome
- Plantar approach can decrease the cost as it does not prerequisite the use of a biotenodesis screw
References

