Kinematic Analysis of in vivo Foot Motion and Gender Difference in Healthy Adults

Dong Yeon Lee, MD, Sang Gyo Seo, MD, Kyung Min Lee, MD, Hey Sun Park, MS, and In Ho Choi, MD

Dept. of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
Kinematic Analysis of in vivo Foot Motion and Gender Difference in Healthy Adults

Dong Yeon Lee, MD, Sang Gyo Seo, MD, Kyung Min Lee, MD, Hey Sun Park, MS, and In Ho Choi, MD

My disclosure is in the Final AOFAS Program Book. I have no potential conflicts with this presentation.
Gender Difference in Gait

• Only a few attempts to identify gender difference in gait
• Females walk with pelvis tilted more anteriorly, hip joints more flexed-adducted-internally rotated, knee joint in more valgus angles

Pelvic Tilt Hip Adduction Hip Rotation

• No report on gender difference in foot kinematics during gait
OrthoTrak Foot3D Model

- OrthoTrak Software (Motion Analysis Co., Santa Rosa, CA)
- 6 segments: Lower leg, Hindfoot, Lateral forefoot, Medial forefoot, Whole forefoot, Hallux
- 10 markers on foot & ankle
Materials & Methods

- 100 young healthy volunteers (50 males & 50 females)
- 3 strides from 5 separate trials
- 12 cameras, 3D optical motion capture system (Motion Analysis Co., Santa Rosa, CA)
- Eva Real-Time software (EVaRT, Motion Analysis Co.)

<table>
<thead>
<tr>
<th></th>
<th>Male (n=50)</th>
<th>Female (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>29.2 yrs (22~35)</td>
<td>28.9 yrs (20~35)</td>
</tr>
<tr>
<td>Weight</td>
<td>71.1 kg (51.9 ~ 105.5)</td>
<td>56.0 kg (44.9 ~ 78.4)</td>
</tr>
<tr>
<td>Height</td>
<td>174.0 cm (160.0 ~ 186.8)</td>
<td>160.6 cm (147.6 ~ 173.8)</td>
</tr>
<tr>
<td>BMI</td>
<td>23.4 kg/m² (18.4~32.2)</td>
<td>21.7 kg/m² (16.8~30.9)</td>
</tr>
<tr>
<td>SMD</td>
<td>88.0 cm (77.5 ~ 99)</td>
<td>81.4 cm (72.5 ~ 89)</td>
</tr>
<tr>
<td>Foot length</td>
<td>25.4 cm (22.6 ~ 28.0)</td>
<td>23.0 cm (20.7 ~ 24.9)</td>
</tr>
<tr>
<td>Foot width</td>
<td>10.1 cm (9.1~11.0)</td>
<td>9.2 cm (8.3~10.7)</td>
</tr>
</tbody>
</table>
Results

- **Basic Gait Parameters**

<table>
<thead>
<tr>
<th></th>
<th>Male (n=50)</th>
<th>Female (n=50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Step length cm</td>
<td>67.06</td>
<td>4.86</td>
<td>63.77</td>
</tr>
<tr>
<td>Stride length cm</td>
<td>134.2</td>
<td>8.71</td>
<td>127.4</td>
</tr>
<tr>
<td>Velocity cm/s</td>
<td>124.0</td>
<td>10.84</td>
<td>125.0</td>
</tr>
<tr>
<td>Cadence steps/min</td>
<td>110.7</td>
<td>6.55</td>
<td>117.6</td>
</tr>
<tr>
<td>Stance Phase % cycle</td>
<td>59.53</td>
<td>1.58</td>
<td>59.29</td>
</tr>
<tr>
<td>FPA (IC) degree</td>
<td>12.92</td>
<td>1.38</td>
<td>8.15</td>
</tr>
<tr>
<td>FPA (MS) degree</td>
<td>11.00</td>
<td>1.43</td>
<td>6.17</td>
</tr>
</tbody>
</table>

FPA, foot progression angle; IC, initial contact phase; MS, mid-stance phase
Results

- Female had larger flexion/extension arc & more valgus rotation in hallux

Range, average ± 1 standard deviation

Male | Female

Hallux
- Hallux Rotation
- Foot Progression

Hindfoot
- HindFoot Rotation
- Pro/Supination

Arch
- Arch Height
- Arch Length
Results

- Female had more dorsiflexed and pronated forefoot motion & larger flexion/extension arc
Summary

• Foot kinematics with OrthoTrak Foot3D system showed relatively low variability in young healthy adults, especially in sagittal plane motion.

• Gender difference in foot kinematics requires different reference value for males and females to interpret in vivo foot motion using 3D multi-segment foot models.
References

Motion Analysis. Foot3D Multi-Segment User’s Manual version 1.1