RELIABILITY AND VALIDITY OF RADIOGRAPHIC MEASUREMENTS IN HINDFOOT VARUS AND VALGUS

Dae Gyu Kwon, MD; Moon Seok Park, MD; Sang Hyeong Lee, MD; Ki Hyuk Sung, MD; Tae Won Kim, MD; Kyoung Min Lee MD

Seoul National University Bundang Hospital
DISCLOSURES

- The authors have no disclosures.
PURPOSE OF THE STUDY

- To examine the clinical relevance of foot radiographic measurements
 - Reliability
 - Intra- and interobserver
 - Validity
 - Discriminant validity
 - Convergent validity
MATERIALS AND METHODS

- Approved by IRB
- 72 patients with hindfoot deformities
 - 36 hindfoot varus
 - 36 hindfoot valgus
- Inclusion
 - Wt bearing X ray, pedobarograph
- Exclusion
 - Previous surgery, severe equinus
FOOT X-RAY MEASUREMENTS

- Evaluating hindfoot deformity (varus vs valgus)
 - Calcaneal pitch angle (Lat)
 - Talocalcaneal angle (Lat)
 - Tibiocalcaneal angle (TibioCalc)
 - Talo-1st metatarsal angle (Lat)
 - Metatarsal stacking angle (MT stacking)
 - Medial-lateral column ratio (ML column ratio)
 - Naviculocuboid overlap (Lat)
 - Talonavicular coverage angle (AP)
 - Talo-1st metatarsal angle (AP)

(Davids et al. JPO 2005)
NAVICULOCUBOID OVERLAP (B/A)

Hindfoot varus

Hindfoot valgus
TALONAVICULAR COVERAGE ANGLE (AP)
TALO-1ST METATARSAL ANGLE (AP)

Hindfoot varus

Hindfoot valgus
VALGUS/VARUS INDEX

Valgus/varus index

\[
\frac{(MMF+MFF)-(LMF+LFF)}{(MMF+MFF+LFF+LMF)}
\]

(Riad et al. 2007)
RELIABILITY

- 3 orthopaedic surgeons measured radiographic indices twice with a three week interval
- Intra- and interobserver reliability
STATISTICAL ANALYSIS

- Sample size
 - ICC target 0.8 for three raters & 95% CI 0.2

- Discriminant validity
 - Cohen’s d & effect-size r

- Convergent validity
 - Correlation between radiographic measurements and pedobarographic index
Summary of the patients

<table>
<thead>
<tr>
<th></th>
<th>Hindfoot valgus group</th>
<th>Hindfoot varus group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (SD)</td>
<td>15.5 (4.2)</td>
<td>30.2 (18.0)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>21 : 15</td>
<td>20 : 16</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(No. of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic planovalgus</td>
<td>(27)</td>
<td>Cerebral palsy (12)</td>
</tr>
<tr>
<td>Cerebral palsy (9)</td>
<td></td>
<td>Residual poliomyelitis (10)</td>
</tr>
<tr>
<td>HMSN (3)</td>
<td></td>
<td>Guillian-Barre syndrome (1)</td>
</tr>
<tr>
<td>Peroneal nerve injury (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital clubfoot (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVA (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown cause (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HMSN, hereditary motor sensory neuropathy; CVA, cerebrovascular accident.
Intraobserver reliability of radiographic measurements

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>LatTC</th>
<th>Tibio Calc</th>
<th>Lat talo-1MT</th>
<th>MT stacking</th>
<th>NC overlap</th>
<th>ML column</th>
<th>AP TN coverage</th>
<th>AP talo-1MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st rater</td>
<td>0.944</td>
<td>0.813</td>
<td>0.908</td>
<td>0.902</td>
<td>0.739</td>
<td>0.972</td>
<td>0.760</td>
<td>0.949</td>
<td>0.957</td>
</tr>
<tr>
<td>2nd rater</td>
<td>0.963</td>
<td>0.814</td>
<td>0.915</td>
<td>0.750</td>
<td>0.873</td>
<td>0.956</td>
<td>0.828</td>
<td>0.857</td>
<td>0.860</td>
</tr>
<tr>
<td>3rd rater</td>
<td>0.861</td>
<td>0.815</td>
<td>0.825</td>
<td>0.800</td>
<td>0.794</td>
<td>0.993</td>
<td>0.637</td>
<td>0.928</td>
<td>0.827</td>
</tr>
</tbody>
</table>
Interobserver reliability of radiographic measurements

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>LatTC</th>
<th>Tibio Calc</th>
<th>Lat talo-1MT</th>
<th>MT stacking</th>
<th>NC overlap</th>
<th>ML Column</th>
<th>AP TN coverage</th>
<th>AP talo-1MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st session</td>
<td>0.957</td>
<td>0.826</td>
<td>0.783</td>
<td>0.850</td>
<td>0.767</td>
<td>0.950</td>
<td>0.564</td>
<td>0.877</td>
<td>0.882</td>
</tr>
<tr>
<td>2nd session</td>
<td>0.851</td>
<td>0.738</td>
<td>0.602</td>
<td>0.809</td>
<td>0.762</td>
<td>0.855</td>
<td>0.463</td>
<td>0.927</td>
<td>0.822</td>
</tr>
<tr>
<td>overall</td>
<td>0.908</td>
<td>0.784</td>
<td>0.731</td>
<td>0.826</td>
<td>0.783</td>
<td>0.908</td>
<td>0.561</td>
<td>0.906</td>
<td>0.889</td>
</tr>
</tbody>
</table>
Discriminatory validity of radiographic measurements

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>LatTC</th>
<th>Tibio Calc</th>
<th>Lat talo-1MT</th>
<th>MT stacking</th>
<th>NC overlap</th>
<th>ML Column</th>
<th>AP TN coverage</th>
<th>AP talo-1MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen’s d</td>
<td>1.00</td>
<td>0.24</td>
<td>0.77</td>
<td>1.89</td>
<td>0.42</td>
<td>4.47</td>
<td>0.18</td>
<td>3.06</td>
<td>3.22</td>
</tr>
<tr>
<td>Effect-size r</td>
<td>0.45</td>
<td>0.12</td>
<td>0.36</td>
<td>0.69</td>
<td>0.20</td>
<td>0.91</td>
<td>0.09</td>
<td>0.84</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Convergent validity of radiographic measurements

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>LatTC</th>
<th>Tibio Calc</th>
<th>Lat talo-1MT</th>
<th>MT stacking</th>
<th>NC overlap</th>
<th>ML column</th>
<th>AP TN coverage</th>
<th>AP talo-1MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>-0.146</td>
<td>0.110</td>
<td>0.138</td>
<td>0.386*</td>
<td>-0.337*</td>
<td>0.639</td>
<td>-0.023</td>
<td>0.613</td>
<td>0.628</td>
</tr>
<tr>
<td>p</td>
<td>0.240</td>
<td>0.374</td>
<td>0.266</td>
<td>0.001</td>
<td>0.005</td>
<td><0.001</td>
<td>0.855</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* P < 0.05
Clinical relevance of each radiographic measurements

<table>
<thead>
<tr>
<th>Measure</th>
<th>Reliability (ICC)</th>
<th>Discriminant validity (effect-size r)</th>
<th>Convergent validity (correlation r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcaneal pitch (Lat)</td>
<td>*****</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>Talocalcaneal (Lat)</td>
<td>****</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Tibiocalcaneal (Lat)</td>
<td>****</td>
<td>**</td>
<td>-</td>
</tr>
<tr>
<td>Talo-1<sup>st</sup> metatarsal (Lat)</td>
<td>****</td>
<td>****</td>
<td>**</td>
</tr>
<tr>
<td>MT stacking (Lat)</td>
<td>****</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Naviculocuboid overlap (Lat)</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
</tr>
<tr>
<td>ML column ratio (Lat)</td>
<td>***</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Talonavicular coverage (AP)</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
</tr>
<tr>
<td>Talo-1<sup>st</sup> metatarsal (AP)</td>
<td>*****</td>
<td>*****</td>
<td>****</td>
</tr>
</tbody>
</table>

*, 0.0-0.2; **, 0.2-0.4; ***, 0.4-0.6; ****, 0.6-0.8; ***** 0.8-1.0; -, not significant.
CONCLUSIONS

- NC overlap, anteroposterior talonavicular coverage angle, and anteroposterior talo-1st metatarsal angle were found to be clinically relevant methods in evaluating hindfoot varus and valgus deformities.
REFERENCES

THANK YOU!