Glutamate, Cytokines & Matrix Metalloproteases are Elevated in Pathologic Posterior Tibial Tendons of Patients with Posterior Tibial Tendon Dysfunction

David M. Tainter, Selene Parekh, Richard D. Bell, James Nunley, Mark Easley, Liufang Jing, Janet Huebner, Virginia B. Kraus, Samuel B. Adams, Jr.
Glutamate, Cytokines, and Matrix Metalloproteases are Elevated in Pathologic Posterior Tibial Tendons of Patients with Posterior Tibial Tendon Dysfunction

David Tainter

My disclosure is in the Final AOFAS program book.

I have no potential conflicts with this presentation.
Posterior Tibial Tendon Dysfunction

- Posterior tibial tendon (PTT) function [1]
 - Most powerful inverter of the foot
 - Important dynamic stabilizer of the arch
- Insufficiency of PTT is painful
 - PTT dysfunction (PTTD), or adult-acquired flatfoot deformity
- ~3.3% of middle-aged women [2]

Anterior and posterior views of a patient with stage 2 PTTD. Note the loss of arch height, heel valgus, and the “too many toes” sign.

Images courtesy of Lew Schon, MD
Motivation & Objectives

- **Unknown etiology**
 - Tendon degeneration may be attributed to abnormal collagen, tenocytes, extracellular matrix turnover, vasculature, etc. [3]
 - Matrix metalloproteases (MMPs)
 - Inflammation and neurotransmitters produced in the tendon may contribute to pain symptoms [4,5,6,7].
 - Inflammatory cytokines, glutamate, substance P (SP), and calcitonin-gene-related-peptide (CGRP)
- Disease involvement of the PTT insertion is unclear

OBJECTIVES

1. To characterize the neurotransmitters, inflammatory cytokines and MMPs that may be the cause of pain in pathologic tendons in PTTD
2. Determine the involvement of PTT insertion
Sample Collection
- 21 patients (15 female, 6 males) undergoing flexor digitorum longus (FDL) tendon transfer for stage 2 PTTD that failed non-operative management
 - Average age: 64.3 yrs (range 53 to 76)
- Tissue samples collected intra-operatively as to-be-discarded surgical waste
 - Healthy FDL, PTT Insertion & Diseased PTT

Sample Processing
- Samples massed and incubated in DMEM media for 48 hours
- Media frozen at -80°C until analysis
- Tissue frozen sectioned for histology (8µm slices)

Cytokine, MMP & Glutamate Assays
- Cytokines and MMPs assayed using sandwich ELISAs
 - Cytokines: IL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-α, IFNγ
 - MMPs: MMP-1, MMP-2, MMP-3, MMP-9, MMP-10
- Glutamate concentrations determined by calorimetric assay

Histology
- IHC Targets: NMDAr1, SP, CGRP
- Hematoxylin & Eosin

Data Analysis
- Concentrations normalized by weight
- Differences amongst healthy FDL, diseased PTT and PTT insertion tested via repeated measures Friedman’s test (α = 0.05)
- Significant results further analyzed using Wilcoxon signed-rank post-hoc test with Bonferroni corrected α = 0.0167
Increased Inflammation in PTTD

- Diseased PTT and PTT insertions
- Significant cytokines:
 - IL-1β
 - IL-6
 - IL-8
 - IL-10
 - TNF-α
- Undetectable:
 - IL-12
 - IFNγ

Notes:

- $H = $ Healthy FDL
- $D = $ Diseased PTT
- $I = $ PTT Insertion
Increased Collagen Remodeling

- Diseased PTT and PTT Insertion
- Significant MMPs:
 - MMP-1
 - MMP-2
 - MMP-3
- Insignificant:
 - MMP-9
 - MMP-10
- Increased matrix turnover
 - Particularly of collagen types I to IV
- Elastin
- Laminin

*\[p < 0.0001 \]

- \(H = \) Healthy FDL
- \(D = \) Diseased PTT
- \(I = \) PTT Insertion
Increased Glutamate

- **Diseased PTT** only
- **IHC** staining of 1 patient for NMDAr1 (20x).
 - Healthy FDL (A) stains negatively.
 - Diseased PTT (B) stains **positively** for NMDAr1
 - Hypercellularity
- May be contribute to pain symptoms

![Healthy FDL](image1)

![Diseased PTT](image2)

- *p ≤ 0.01
- **p < 0.001**

Legend
- H = Healthy FDL
- D = Diseased PTT
- I = PTT Insertion
Discussion

- Inflammatory cytokines, evidence of matrix remodeling and pain mediators are dramatically elevated in diseased PTT.
- PTT Insertion shows chronic degeneration *without* pain mediator expression.

Ongoing & Future Work
- Continue staining for NMDAr1, SP, CGRP, H&E and others.
- Associate cytokine production and neurotransmitter receptor staining to *patient reported outcomes*.

Special thanks to:
- Dr. Samuel Adams
- Dr. Lori Setton
- The Setton Lab

This study was performed with support from:
- Department of Orthopaedic Surgery, Duke University
- Duke-NUS Graduate Medical School
References

