CT Density Analysis of the Medial Cuneiform

Nickolas Boutris BS
Karan Patel BS
Domingo Molina IV BS
Clark R. Andersen MS
Vinod K. Panchbhavi MD

Department of Orthopedic Surgery
University of Texas Medical Branch
Galveston, Texas
CT Density Analysis of the Medial Cuneiform
Vinod K. Panchbhavi, MD

My disclosure is in the Final AOFAS Program Book.
I have no potential conflicts with this presentation.
Background

- A cannulated lag screw inserted through the medial cuneiform into the base of the second metatarsal is currently utilized to reduce and hold the diastasis and aid healing of a Lisfranc ligament injury.
Background

- The medial cuneiform is a cancellous bone with variable density
- The objective of this study was to identify the densest part of the medial cuneiform bone into which a screw can be directed aiming to obtain best purchase possible
Methods

• CT scans of 60 patients ranging in age from 18 to 47 were randomly selected

• Mean CT intensity in Hounsfield units was measured at 12 sampled locations within the medial cuneiform

  • 3 cross sections were utilized moving anterior to posterior

  • Each of the 3 cross sections was divided into 4 quadrants and data was collected from a consistently sized circular area within each quadrant

• Differences among the 12 sampled regions were assessed by ANOVA
Results

• All results correlated CT intensity with bone density

• Males had greater bone density than females ($p < 0.001$)

• No difference in bone density among races ($p = 0.28$)

Table 1. Adjusted-mean density (Hounsfield Units), with 95% confidence interval, for each gender, race, and location.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>315 (295-334)</td>
<td>321 (309-333)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>331 (297-345)</td>
<td>321 (309-333)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>304 (287-322)</td>
<td>321 (309-333)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>489 (460-519)</td>
<td>349 (320-379)</td>
<td>330 (301-359)</td>
<td>333 (304-363)</td>
<td>443 (414-473)</td>
<td>353 (324-382)</td>
<td>225 (196-254)</td>
<td>208 (179-237)</td>
<td>365 (335-394)</td>
<td>302 (272-331)</td>
<td>165 (136-194)</td>
<td>198 (169-228)</td>
</tr>
</tbody>
</table>
Results

• The anterior-dorsal-lateral site was significantly denser than all other sites (p<0.001) except the middle-dorsal-lateral (p=0.53)
• The posterior-plantar-lateral site was significantly less dense than all other sites (p<0.001) except the middle-plantar-lateral/medial and the posterior-plantar-medial sites (p<0.14)
• A general trend of density increasing in the anterior and dorsal directions is evident

Figure 1: Graphical representation of adjusted-mean densities at sampled locations within the medial cuneiform. Density is indicated by the level of grey, with black indicating least dense and white most dense.
Discussion

• This is the first study to date to measure density of the medial cuneiform using living subjects
  ▪ Largest sample size of any study measuring density of medial cuneiform\textsuperscript{2,3}
  ▪ Previous study by Pelt et al used 10 cadaveric feet and only analyzed the medial wall of the medial cuneiform \textsuperscript{2}
Conclusion

- The densest area of the medial cuneiform is the most anterior, dorsal, and lateral portion
- **Clinical Significance:** May indicate that most optimal screw placement for Lisfranc repair would be to pass through that area
