Biomechanical Evaluation of Threaded Headless Screws Compared to Traditional Headed Screws in Subtalar Fusion Model

David E. Oji, Brent Parks, Mark Reed, Josh Nadaud, Michael Tsai, Alan Yan, Stuart Miller
Biomechanical Evaluation of Threaded Headless Screws Compared to Traditional Headed Screws in Subtalar Fusion Model

David Oji
Stuart Miller

My disclosure is in the Final AOFAS Program Book. I have no potential conflicts with this presentation.
Background:

• Headless screws shown to be equal or superior to traditional screws in:
 – maintaining fixation in an osteotomy
 – fracture reduction and fixation

• Headless screws provide a locking mechanism in the setting of lower compressive strength versus traditional screws

• Hypothesis:
 – Headless screws hold a subtalar arthrodesis fusion model with less deformity in cyclic loading than conventional screws
Method:

• 12 matched pairs -> subtalar arthrodesis in-situ

• 2 screw fixation of the subtalar joint
 – 1 extremity w/ Integra 7.5mm headless cannulated screws
 – Contralateral side w/ AO 7.3mm partially threaded cannulated screws
 – Joint surface was not prepared
Method:

- Talus / calcaneus excised and mounted on loading frame
- Differential variable reluctance transducers used to measure motion
- Torque applied rate of 1 degree / sec
- 0 N of axial load
- Stiffness and subtalar motion was assessed
- Paired t-test to determine statistical significance
Results:

- Headless screws compared to traditional screws demonstrated less motion before and after cyclical loading to internal and external rotation (p<0.05)
Results:

- Statistically significant higher initial stiffness to internal and external rotation ($p<0.02$ & $p<0.0002$)
- Higher final stiffness to internal and external rotation but not statistically significant

<table>
<thead>
<tr>
<th></th>
<th>Initial Stiffness</th>
<th>Final Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headless Screw</td>
<td>0.97</td>
<td>1.14</td>
</tr>
<tr>
<td>Traditional Screw</td>
<td>0.57</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Initial Stiffness</th>
<th>Final Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headless Screw</td>
<td>1.25</td>
<td>1.23</td>
</tr>
<tr>
<td>Traditional Screw</td>
<td>0.56</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Discussion:

• Headless screws demonstrated statistically significant increased stiffness and less motion compared to traditional screws

• Possible improved biomechanical properties due to proximal locking mechanism

• Clinical application in fusions that require more stability or in patients with osteopenic bone

• Provide less soft tissue irritation

• Further studies are needed to determine the clinical significance of using headless screws in subtalar fusion
Conclusion:

• The headless screw model was able to hold a subtalar arthrodesis with less deformity to cyclic loading compared to conventional headed screws.
References

8. Hintermann B, Valderrabano V, Nigg B. *Influence of screw type on obtained contact area and contact force in a cadaveric subtalar arthrodesis model*. Foot Ankle Int. 2002 Nov;23(11):986-91

