Biomechanical Comparison of Augmented Broström Repair Techniques to the Intact Anterior Talofibular Ligament

Nicholas A. Viens, M.D.
Coen A. Wijdicks, Ph.D.
Kevin J. Campbell, B.S.
Robert F. LaPrade, M.D., Ph.D.
Thomas O. Clanton, M.D.

Steadman Philippon Research Institute / The Steadman Clinic
Vail, Colorado

AOFAS Annual Meeting
Hollywood, Florida
July 17-20, 2013
Disclosures

All images are property of the authors &/or Steadman Philippon Research Institute unless otherwise noted.

Complete disclosures are included in the Final AOFAS Program Book.

Cadaveric specimens and surgical equipment (FiberTape, BioComposite SwiveLock anchors, FiberWire) for this study were provided by Arthrex, Inc.

Drs. Clanton & LaPrade are consultants for Arthrex, Inc.

The Steadman Philippon Research Institute is a 501(c)(3) non-profit institution supported financially by private donations and corporate support from the following entities:

- Smith & Nephew Endoscopy, Inc.
- Arthrex, Inc.
- Siemens Medical Solutions USA, Inc.
- ConMed Linvatec, Inc.
- Össur Americas, Inc.
- Small Bone Innovations, Inc.
- Opedix, Inc.
- Evidence Based Apparel
- Sonoma Orthopedics, Inc.
Lateral Ankle Instability

• Broström repair of ATFL is typically 1st line surgical option
 – Relies on good quality native tissue & protected early rehabilitation
 ○ However, initial strength <50% of intact ATFL
 □ Waldrop et al. AJSM (2012).
• Additional options needed for specific situations w/ inadequate tissue quality:
 – Generalized ligamentous laxity
 – Long-standing ankle instability w/ attenuated native tissues
 – Very large patients or elite athletes w/ increased demands on repair
 – Graft reconstruction not feasible

Adapted from Waldrop. AJSM (2012).
Study Purpose & Hypothesis

• Controlled laboratory biomechanical comparison of:
 – (1) Nonabsorbable suture tape alone
 o Fixed to fibula & talus w/ suture anchors
 – (2) Broström repair of ATFL w/ suture tape augmentation
 o Two #0 nonabsorbable sutures & suture tape fixed to bone
 – (3) Intact ATFL

• Hypothesis: augmented techniques would have similar properties to the intact ATFL at time zero
 – Ultimate load to failure (N)
 – Stiffness (N/mm)
Materials & Methods

• 18 non-paired, fresh-frozen cadaveric specimen
 – No prior history or evidence of ankle injury or surgery
 – Mean age 53.2 years (range 31-65 years)
 – Random assignment to test groups

Suture tape alone

Broström w/ augmentation
Materials & Methods (cont.)

- Specimen stripped of tibia & other soft tissue attachments at ankle
 - Only native ATFL vs repair remain
- Instron testing
 - Specimen secured in custom jig
 - 20° inversion
 - 10° plantarflexion
 - Loaded to failure
 - Fibular displacement (rate 20 mm/min)
 - Video extensometer measurement of fibular displacement
Results: Ultimate Failure

- Intact ATFL
 - Mean 154.0 N (± 63.7 N)
- Augmentation alone
 - Mean 315.5 N (± 66.8 N)
 - p = 0.017
 [compared to intact]
- Broström w/ augmentation
 - Mean 250.8 N (±122.7 N)
 - p = 0.175
 [compared to intact]

No significant difference between suture tape techniques
Results: Stiffness

- Intact ATFL
 - Mean 14.5 N/mm (± 4.4 N/mm)
- Augmentation alone
 - Mean 31.4 N/mm (± 9.9 N/mm)
 - p = 0.008 [compared to intact]
- Brostrøm w/ augmentation
 - Mean 21.1 N/mm (± 9.1 N/mm)
 - p = 0.369 [compared to intact]

No significant difference between suture tape techniques
Conclusions

• Suture tape augmentation is at least as strong & stiff as the intact ATFL in a cadaveric model at time zero
 – Improved biomechanical properties at time zero compared to standard Broström repair of ATFL
 ○ Waldrop et al. AJSM (2012)

• Clinical role of suture tape augmentation in the lateral ankle remains to be determined
 – Further research necessary before clinical recommendations can be made
Selected References

