Biomechanical Analysis of Fixation Strength of a Novel Intramedullary Plate for Chevron Osteotomy of the First Metatarsal

Mark Scioli, MD
David Kay, MD
Bryan DenHartog, MD
Jamey Price, MS
Brian Hockett, BS
Mandatory Disclosure Statement

All disclosures are in the Final AOFAS Program Book.

The authors have a potential conflict with this presentation based on receiving something of value (>\$100.00) from a commercial company or institution related directly or indirectly to the subject of this presentation as noted below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Scioli</td>
<td>OrthoHelix Surgical Designs, Inc.</td>
</tr>
<tr>
<td>David Kay</td>
<td>OrthoHelix Surgical Designs, Inc.</td>
</tr>
<tr>
<td>Bryan DenHartog</td>
<td>OrthoHelix Surgical Designs, Inc.</td>
</tr>
<tr>
<td>Jamey Price</td>
<td>OrthoHelix Surgical Designs, Inc.</td>
</tr>
<tr>
<td>Brian Hockett</td>
<td>OrthoHelix Surgical Designs, Inc.</td>
</tr>
</tbody>
</table>
Background

• The Chevron osteotomy is a widely used technique for correction of the hallux valgus deformity.¹

• Screw fixation is commonly used, however construct stability can be compromised through inadequate rotational stability and insufficient contact area due to increased correction.

• Biomechanics test to demonstrate that a novel intramedullary plate fixation device offers a stronger, more stable fixation option than single bicortical screw fixation when used with a standard Chevron osteotomy
Methods

• Comparison of a single screw and ISO™ Plate fixation techniques for Chevron osteotomies of 25% and 50% shifts.

• Twelve first metatarsal models were constructed using polyurethane foam (Sawbones®)
 • Ø25mm model - 15pcf core inside of a 30 pcf “cortical” layer (3.0mm thick).
 • 60° Chevron osteotomy
 • A 2mm resection on the medial aspect of the distal portion was performed prior to shifting
Methods

• Screw constructs were fixed with a bicortical solid screw (ø2.7mm) oriented dorsal-plantar and distal-proximal, perpendicular to the plantar face of the osteotomy cut.

• ISO™ Plates were inserted distal-proximal into the intramedullary canal and fixed using three 2.4mm screws.

• Constructs were fixed at a 15° plantar-flexed angle to simulate ground force loading at the distal metatarsal head²,³

• Loading was applied until catastrophic failure occurred.
Results

• Construct strength was assessed through peak load at initial failure while stability was assessed through a stiffness regression calculation.
 • A two-sample T-test (α=.05) was utilized to establish statistical significance

• The ISO™ Plate was significantly stronger than single screw fixation in constructs with 25% and 50% shifts (p=.001 and .0001, respectively).

• The ISO™ Plate construct strength of a 50% shift was significantly stronger than that of a 25% shift fixed with a screw (p=.004).
Results

• The ISO™ Plate was significantly stiffer than single screw fixation in constructs with 25% and 50% shifts (p = .0005 and .029, respectively).

• The ISO™ Plate construct stiffness of a 50% shift was significantly stronger than that of a 25% shift fixed with a screw (p = .0006).
Conclusion

• The ISO™ Plate demonstrates superior fixation strength and stiffness for Chevrons with 25% and 50% shifts

• For a 50% shift, the ISO™ Plate has the potential to increase stability compared to traditional fixation methods.

• Ongoing studies will include further mechanical analysis as well as prospective clinical studies examining the clinical outcomes seen with this implant.
References

