Arthroscopic ATFL repair for Chronic Ankle Instability with Suture Anchor Technique

Presenting Author:
Eung-soo Kim, MD, PhD – Seoul, Republic of Korea

Additional Author:
Kyung Tai Lee, MD PhD
Young koo Lee, Asst. Professor

Summary
This study evaluated the results of 28 ankles treated with arthroscopic ATFL repair using bioabsorbable anchors. The mean AOFAS scores was 92.48 ± 6.14 at the last follow-up compared to their mean preoperative AOFAS scores of 60.78 ±16.38. Good clinical results were obtained with several cases of minor complications. This minimally invasive technique is a reasonable alternative to other open surgical procedures for chronic ankle.

Introduction
The purpose of this study was to retrospectively evaluate clinical results after arthroscopic repair for chronic ankle instability with a bio-absorbable anchors with 2 sutures.

Methods
We evaluated the results 28 ankle which had been treated with arthroscopic ATFL repair using bioabsorbable anchors with a fiberwire and a tightwire (Biosuturetak system : Arthrex product, USA) placed on the fibula from March 2008 to January 2009. Average follow up period was 15.9 months (range: 13-25 months). Patients were evaluated by AOFAS ankle-hindfoot score, stress radiograph.

Results
The mean AOFAS scores was 92.48 ± 6.14 at the last follow-up compared to their mean preoperative AOFAS scores of 60.78 ±16.38. The mean postperative Anterior draw test (ADT) score differences between two ankles was 0.61 ± 0.75 compared to their mean preoperative ADT score differences between two ankles was 3.59 ± 0.68. Good clinical results were obtained with several cases of minor complications.

Conclusions
Arthroscopic ligament reconstruction for chronic lateral ankle instability using suture anchors was effective in returning patients to their preinjury functional level. We had good clinical results with several complications all of which were minor. We believe that this minimally invasive technique would be an alternative method to other open surgeries for chronic ankle instability.