Accessory Navicular
Aaron T. Scott, MD
(Winston-Salem, North Carolina)

Introduction:
- First described by Bauhin in 160510
- Numerous other names in literature (Accessory Scaphoid, Prehallux, Os Naviculare)6
- Incidence 5-14%1,7,12, only small percentage are symptomatic
- Up to 90% are bilateral26
- Autosomal dominant inheritance pattern1

History:
- Medial midfoot pain with activities, often exacerbated by shoe wear
- Minor trauma cited10
- Flexible flat foot deformity (debated)
 - Although Kidner10 felt that the altered pull of the PTT led to flattening of the arch, others, such as Kanati et al9, have found no association b/t flexible flatfoot deformity and the presence of an AN
 - If the presence of an AN does not cause the flattening, it could be that the flatfoot increases the likelihood that an AN becomes symptomatic

Physical Examination:
- Tender medial prominence
- Pain with resisted inversion, which places tension on the synchondrosis
- Often flexible flat foot deformity is noted

Radiographic Evaluation:
- Plain Radiographs: best visualized and classified on the external oblique view
- MRI: not necessary for the diagnosis, but allows for evaluation of concomitant pathology
- Ultrasound: hyperechoic, heterogeneous appearance of the synchondrosis
- Bone Scan: sensitive, but lacks specificity; 50% of asymptomatic ANs may show increased uptake

Geist Classification7:
- Type I: small 2-3mm sesamoid within PTT; no bony attachment to navicular; rarely symptomatic
- Type II: large accessory ossicle with intervening synchondrosis; most likely to be symptomatic
- Type III: bony bridge; the “cornuate” navicular; rarely symptomatic

Non-surgical Management:
- Doughnut Padding, Orthotics, UCBL Orthosis, Cast Immobilization
- Poor results reported in the literature: successful less than 10% of the time8

Surgical Management:
- Excision: with (Kidner) or without PTT advancement
 - Good to Excellent results in 85-90% of patients1,20,21,27
 - No significant difference in outcomes b/t Kidner and simple excision16
 - Multiple modifications of the Kidner: Bony Tunnel3, Suture Anchors5, Interference Screw21
- Fusion / ORIF: 2 technique papers have been published13,17; one case series6; one comparative study22
 - No apparent diff in outcome; but nonunion and painful hardware have been noted in fusion pts.22
- Drilling: Nakayama paper18
 - 97% Good to Excellent results; 58% achieved a bony union
-My preferred technique (excision and a suture anchor)
-Potential Sources of Failure
 -Medial Pain – Painful scar, neurona, tendinosis of or damage to PTT, incomplete bony resection, nonunion or prominent hardware (s/p fusion surgery), persistent pes planovalgus
 -Lateral Pain – Subfibular impingement from incomplete correction of pes planus deformity

Adjunctive Procedures:
- Percutaneous TAL or Strayer
- Caleaneal Osteotomy (Medializing Osteotomy or Evans)
- Cotton Osteotomy
- Subtalal Arthrod express
- Very little literature to guide selection. Really at the surgeon’s discretion.

References:
22. Scott, AT; Sabesan, VJ; Saluta, JR; Wilson, MA; Easley, ME: Fusion versus excision of the symptomatic Type II accessory navicular: a prospective study. Foot Ankle Int 30:10-15, 2009.