The Use of Weight-Bearing CT Scan in the Evaluation of Hindfoot Alignment

Jonathan Kaplan MD, Tony Tracey BS MS, Matthew Welck FRCS (orth), Shu-Yuan Li MD PhD, Adriana Avila MD Mark Myerson MD

The Foot and Ankle Association Inc.

Coordinating the global delivery of orthopedic foot and ankle care to underprivileged patients and communities
Disclosures

• NO CONFLICT TO DISCLOSE
• Jonathan Kaplan MD
• Tony Tracey BS MS
• Matthew Welck FRCS (orth)
• Shu-Yuan Li MD PhD
• Adriana Avila MD
• Mark Myerson MD

• Our disclosures are in the Final AOFAS Mobile App
Radiographic Hindfoot Alignment

- Hindfoot Moment Arm (HMA)
- Hindfoot Alignment Angle (HAA)

Strengths
- Reproducible, Quick

Weaknesses:
- Rotation dependent,
- 2-dimensional
- lacks foot ‘contribution’
CT Scan: Torque Ankle Levar Arm System (TALAS)

- Calculates hindfoot alignment based on contribution of the foot

- Tripod ‘Contact Points’
 - Talar Dome
 - Calcaneus
 - 1st MTH
 - 5th MTH

- PedCat (Curvebeam, Warrington, USA) 3-D weight bearing CT scans
Ground Reactive Force Calcaneal Offset (GRFCO)
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met1</td>
<td>525.0</td>
<td>139.0</td>
<td>487.4</td>
</tr>
<tr>
<td>Met5</td>
<td>343.0</td>
<td>279.0</td>
<td>487.4</td>
</tr>
<tr>
<td>Calcaneus</td>
<td>512.0</td>
<td>727.0</td>
<td>500.0</td>
</tr>
<tr>
<td>Talus</td>
<td>542.0</td>
<td>636.7</td>
<td>282.0</td>
</tr>
</tbody>
</table>

Foot: RIGHT

F.A.O. [%]: 8.23

C.O. [mm]: 19.04

H.A. [°]: 32.55

Varus

Valgus

GRFCO
Study Design

• Purpose: Compare XR HMA, XR HAA, CT GRFCO
• Retrospective Review 2014-2016
• n = 104 feet
 • 52 Males : 52 Females
 • 68 valgus : 36 Varus
• Three investigators
 • Two sets of measurements per investigator
 • Measurements taken ≥2 weeks apart
• Statistics:
 • Means, Standard Deviations, ANOVA,
 • Correlations
 • Reliability ICC
Hindfoot Moment Arm

<table>
<thead>
<tr>
<th>Investigator - Measurement</th>
<th>Mean (mm)</th>
<th>Standard Deviation</th>
<th>Intraobserver Reliability (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator 1 – Measurement #1</td>
<td>17.2</td>
<td>12.9</td>
<td>.449</td>
</tr>
<tr>
<td>Investigator 1 – Measurement #2</td>
<td>20.0</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>Investigator 2 – Measurement #1</td>
<td>15.8</td>
<td>12.7</td>
<td>.921</td>
</tr>
<tr>
<td>Investigator 2 – Measurement #2</td>
<td>15.5</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Investigator 3 – Measurement #1</td>
<td>17.7</td>
<td>13.1</td>
<td>.908</td>
</tr>
<tr>
<td>Investigator 3 – Measurement #2</td>
<td>16.7</td>
<td>13.4</td>
<td></td>
</tr>
</tbody>
</table>
Hindfoot Alignment Angle

<table>
<thead>
<tr>
<th>Investigator - Measurement</th>
<th>Mean (degrees)</th>
<th>Standard Deviation</th>
<th>Intraobserver Reliability (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator 1 – Measurement #1</td>
<td>12.8</td>
<td>9.0</td>
<td>.896</td>
</tr>
<tr>
<td>Investigator 1 – Measurement #2</td>
<td>12.3</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Investigator 2 – Measurement #1</td>
<td>13.3</td>
<td>8.9</td>
<td>.954</td>
</tr>
<tr>
<td>Investigator 2 – Measurement #2</td>
<td>13.5</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Investigator 3 – Measurement #1</td>
<td>12.0</td>
<td>8.9</td>
<td>.925</td>
</tr>
<tr>
<td>Investigator 3 – Measurement #2</td>
<td>12.8</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>
Ground Reactive Force Calcaneal Offset

<table>
<thead>
<tr>
<th>Investigator - Measurement</th>
<th>Mean (degrees)</th>
<th>Standard Deviation</th>
<th>Intraobserver Reliability (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator 1 – Measurement #1</td>
<td>7.85</td>
<td>6.1</td>
<td>.955</td>
</tr>
<tr>
<td>Investigator 1 – Measurement #2</td>
<td>7.87</td>
<td>5.7</td>
<td>.939</td>
</tr>
<tr>
<td>Investigator 2 – Measurement #1</td>
<td>7.97</td>
<td>6.13</td>
<td>.939</td>
</tr>
<tr>
<td>Investigator 2 – Measurement #2</td>
<td>7.87</td>
<td>6.37</td>
<td>.962</td>
</tr>
<tr>
<td>Investigator 3 – Measurement #1</td>
<td>7.99</td>
<td>6.34</td>
<td>.962</td>
</tr>
<tr>
<td>Investigator 3 – Measurement #2</td>
<td>8.10</td>
<td>6.23</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Radiograph Hindfoot Moment Arm
 - Good to Excellent Intra-observer Reliability (ICC .449-.921)
 - No significant difference between investigators (Interobserver)

- Radiograph Hindfoot Alignment Angle
 - Excellent Intra-observer Reliability (ICC .896-.954)
 - No significant difference between investigators (Interobserver)

- CT GRFCO
 - Best Intra-observer Reliability (ICC .955-.962)
References

• Baverel L, Brilhault J, Odri G, Boissard M, Lintz F. Influence of lower limb rotation on hindfoot alignment using a conventional two-dimensional radiographic technique [published online March 30, 2016]. Foot Ankle Surg.

• Richter M, Seidl B, Zech S, Hahn S. PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg. 2014;20(3):201-207

• Saltzman CL, el-Khoury GY. The hindfoot alignment view. Foot Ankle Int. 1995 Sep;16(9):572-6