Posterior tibial tendon transfer: Biomechanical evaluation of circumtibial, above-retinaculum and below retinaculum transmembranous transfer

Emilio Wagner, Pablo Wagner, Diego Zanolli, Cristian Ortiz, Andres Keller, Ruben Radkievich, Gunther Redenz, Rodrigo Guzmán
Disclosure

- No conflicts to disclose
- Posterior tibial tendon transfer: Biomechanical evaluation of circumtibial, above-retinaculum and below retinaculum transmembranous transfer
 - Emilio Wagner, MD
 - Pablo Wagner, MD
 - Diego Zanolli, MD
 - Cristian Ortiz, MD
 - Andres Keller, MD
 - Ruben Radkievich, MD
 - Gunther Redenz, PT
 - Rodrigo Guzmán, PT, PHD

- Our disclosures are in the AOFAS mobile App.
- We have no potential conflicts with this presentation
Introduction

- Posterior tibial tendon transfer
 - Compensate loss of dorsiflexion
 - Cavus foot
 - Dropfoot
 - Equinovarus
 - CMT
 - etc
Introduction

• Tendon transfer routes

 – Circumtibial
 • Subcutaneous surrounding the medial malleolus

 – Transmembranous
 • Above extensor retinaculum
 • Below extensor retinaculum
Objective

• Compare tendon transfers regarding
 – Tendon gliding resistance
 – Foot kinematics

– Tendon transfers evaluated
 • circumtibial transfer
 • Transmembranous above retinaculum
 • Transmembranous below retinaculum
Methods

• 8 cadaveric specimens
• Luminous skin markers
 – Oxford foot model
• Dead weight on all tendons (50% stance phase)
• Posterior tibial tendon (PTT) transferred to intermediate cuneiform
Methods

• Tension-tensile machine (Kinetecnics®, Santiago, Chile)
• 10 Dorsiflexion / plantarflexion cycles pulling the transferred PTT
 • Circumtibial
 • Transmembrane Above retinaculum
 • Transmembrane Below retinaculum

—Outcomes
 • Foot kinetics: 8 HD cameras
 • Tendon gliding resistance
Results

• Gliding resistance
 – Circumtibial: highest gliding resistance (p<0.05)
 – Transmembranous: No difference between above and below retinaculum (p>0.05)
Results

• Ankle Kinematics
 – All transfers have less ankle ROM than control group
 – Circumtibial:
 • lowest ROM of all transfers (p<0.05)
 • significant supination (p<0.05)
 – Transmembranous
 • No difference between above and below retinaculum
Discussion

• Circumtibial transfer
 – Highest gliding resistance
 – Lowest ankle ROM (dorsiflexion)
 – Significant supination

• Transmembranous transfer
 – No difference between above and below retinaculum
 – Above retinaculum: bowstring effect, not cosmetic
Conclusion

• Transmembranous transfer
 – Mechanically better than circumtibial transfer
 – Below retinaculum: option to be considered
References

