RIGID SYNDESMOTIC FIXATION ALTERS JOINT CONTACT MECHANICS & TALAR KINEMATICS

Jessica E. Goetz, PhD
Chamnanni Rungprai, MD
Phinit Phisitkul, MD

UNIVERSITY OF IOWA HEALTH CARE
Disclosure

NO CONFLICT TO DISCLOSE
Jessica E. Goetz, PhD
Chamnanni Rungprai, MD
Phinit Phisitkul, MD

Our disclosures are in the Final AOFAS Mobile App. We have no potential conflicts with this presentation.
Syndesmotic Compression

- Often quoted studies have suggested that overcompression is unlikely, though recent literature has shown otherwise
- Overcompression is seen intraoperatively
Syndesmotic Fixation

• There are variable methods of fixation available:
 • 3.5 mm screw(s)
 • 4.5 mm screw(s)
 • Tightrope

• Effects of rigid fixation on changes in joint kinematics and contact mechanics remain unclear

PURPOSE:
Evaluate the effects of rigid fixation on talar kinematics and joint contact mechanics in a cadaveric model
Methods – Cadaveric Testing

• 12 fresh-frozen cadaveric ankle joints
 • Tekscan pressure sensor inserted over talar dome (n=6)
 • Tekscan pressure sensor cut and inserted simultaneously in medial and lateral gutter (n=6)

• Rigid cluster of reflective markers mounted on tibia, fibula, and talus for motion capture
Methods – Cadaveric Testing

- 600 N applied
 - 20° Plantar Flexion
 - 10° Plantar Flexion
 - Neutral
 - 10° Dorsiflexion

- Conditions
 - Intact - No syndesmotic fixation
 - 1 x 3.5mm, 4-cortex screw
 - 2 x 3.5mm, 4-cortex screws

- Free internal/external rotation
- Free inversion/eversion
Methods - Analysis

• Transformed to anatomic coordinate system

• Calculated fixed center of rotation (CoR) in a sagittal plane

• Calculated changes in peak contact stress on talar dome and in medial/lateral gutters
Results – Center of Rotation

- Center of rotation was calculated in 10 degree increments.
- Increasing fixation rigidity generally increased anterior and superior movement.

Anterior CoR Movement

<table>
<thead>
<tr>
<th></th>
<th>20P to 10P</th>
<th>10P to Neu</th>
<th>Neu to 10D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant.</td>
<td>0.9</td>
<td>-0.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Sup.</td>
<td>3.1</td>
<td>-1.4</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Superior CoR Movement

<table>
<thead>
<tr>
<th></th>
<th>20P to 10P</th>
<th>10P to Neu</th>
<th>Neu to 10D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant.</td>
<td>2.3</td>
<td>1.4</td>
<td>13.3</td>
</tr>
<tr>
<td>Sup.</td>
<td>2.2</td>
<td>0.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Results – Contact Stress

- Talar dome stress decreased 10%-20% (depending on flexion angle) with increasing fixation
- Gutter contact stress generally increased with each additional syndesmotic screw
Discussion - Limitations

- No proximal tibiofibular articulation due to space constraints in the MTS frame
- Quasi-static loading rather than dynamic
- No relaxation of compression over time or with motion
 - Screws are rigid, however the bone in which they insert is viscoelastic and can creep
 - Several cycles of motion may decrease the magnitude of the stress measured in this work
- Lack of statistical significance among CoR data
 - Several specimens translated significantly, several did not
 - Effective levering-out of talus from mortise caused dramatic and variable changes in the CoR
Discussion & Conclusions

• Increasing rigidity of syndesmotic fixation caused the talar center of rotation to move anteriorly and superiorly in the sagittal plane.
 • Two screws effectively caused the talus to lever-out of the mortise in several specimens, dramatically changing the CoR, and increasing variability in the average talar movement
 • While no statistical significance was achieved, it seemed realistic that some ankles were at greater risk for significant talar translation

• Increasing rigidity of syndesmotic fixation slightly decreased the contact stress on the talar dome and increased contact stress in the gutters
 • Changes in contact stress supported by talar translations
References