Distal versus Proximal Metatarsal Osteotomy for the Correction of Hallux Varus as Complication of Hallux Valgus Surgery

Joowon Joh, M.D., Kyungjin Choi, M.D.

Dr. Choi’s Orthopedic Surgery Clinic, Seoul, Korea
Distal versus Proximal Metatarsal Osteotomy for the Correction of Hallux Varus as Complication of Hallux Valgus Surgery

Joowon Joh, M.D.

My disclosure is in the Final AOFAS Mobile App.
I have no potential conflicts with this presentation.
Introduction

- Surgical options of hallux varus following surgery for hallux valgus
 - Medial capsular release
 - Corrective osteotomy
 - Tendon transfer
 - Arthrodesis

No studies comparing the results of corrective metatarsal osteotomy at different levels.

The Purpose of this study

- To compare the clinical and radiological outcomes of two types of metatarsal osteotomy in hallux varus deformity as complication of hallux valgus surgery
 : Distal chevron vs Proximal chevron
Hallux varus correction following hallux valgus surgery by a single surgeon.

Underwent chevron metatarsal osteotomy with medial displacement and a medial closing wedge osteotomy along with a medial capsular release, but without tendon transfer.

Two groups based on their operative treatment:

- **Group A**
 - Distal chevron metatarsal osteotomies
 - 22 patients
 - Mean F/U of 23 months (14 to 42)
 - All females
 - Mean age 46.7 years

- **Group B**
 - Proximal chevron metatarsal osteotomies
 - 26 patients
 - Mean F/U of 20 months (12 to 47)
 - All females
 - Mean age 42.5 years
Case

Group A
F/49
Pre-op. Post-op.

Group B
F/52
Pre-op. Post-op.
Material and Methods (II)

◆ Clinical and radiographic assessment
 • American Orthopaedic Foot and Ankle Society (AOFAS) scoring system
 • Hallux valgus angle (HVA)
 • First-second intermetatarsal angle (IMA)
 • Distal metatarsal articular angle (DMAA)
 • Mean relative length ratio of the first and second metatarsals

◆ Statistical analysis
 • Paired t-test and independent t-test
 • Mann-Whitney’s U-test
 • P < 0.05
 • SPSS 12.0 for windows
Results(II) – Intragroup comparison

Clinical Assessment

- AOFAS score

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op.</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>Post-op.</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

* P<0.05*

Radiographic Assessment

- Group A
- Group B

Mean relative length ratio of the 1st. and 2nd. metatarsals

<table>
<thead>
<tr>
<th></th>
<th>Pre OP</th>
<th>Post OP</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>1.01</td>
<td>0.98</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Group B</td>
<td>0.98</td>
<td>0.97</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

*, Paired t-test. The p values are for intragroup comparisons.
Results(II) – Intergroup comparison

<table>
<thead>
<tr>
<th>Pre- and Post-operative data</th>
<th>Group A (N = 22)</th>
<th>Group B (N = 26)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOFAS</td>
<td>77 → 92</td>
<td>72 → 90</td>
<td>0.482</td>
</tr>
<tr>
<td>HVA, degree</td>
<td>-11.9 → 5.1</td>
<td>-13.1 → 4.8</td>
<td>0.885</td>
</tr>
<tr>
<td>IMA, degree</td>
<td>-0.5 → 2.7</td>
<td>-1.5 → 8.3</td>
<td>0.041</td>
</tr>
<tr>
<td>DMAA, degree</td>
<td>11.7 → 1.2</td>
<td>8.5 → 5.7</td>
<td>0.033</td>
</tr>
<tr>
<td>Mean relative length ratio of the 1st. and 2nd. metatarsals</td>
<td>1.01 → 0.98</td>
<td>0.98 → 0.97</td>
<td>0.297</td>
</tr>
</tbody>
</table>

*, Mann-Whitney U-test & independent t-test. The p values are for intergroup comparisons.
Combined causes of hallux varus following surgery for hallux valgus
- Excessive lateral release
- Excision of the lateral sesamoid or lateral head of the FHB
- Overcorrection of the IMA
- Excessive medial capsulorrhaphy
- Excessive resection of the medial eminence

Main cause from the radiographs of the 48 feet in our study

- Overcorrection of the IMA (31 feet, 65%)
- Excessive excision of the medial eminence with overcorrection of the IMA (7 feet, 15%)
- Soft-tissue imbalance with an IMA > 0° (10 feet, 20%)

∴ We performed metatarsal osteotomy rather than soft tissue procedure alone.
Chevron ostetotomy with a medial closing wedge is a reliable operation for improvement of the DMAA, IMA and joint congruity.

We found that

- Proximal chevron osteotomy with medial closing wedge:
 “6.6° greater increase in the correction of the 1st. And 2nd. IMA”

- Distal chevron osteotomy with medial closing wedge:
 “7.7° greater decrease in the correction of DMAA”

Hallux valgus had been treated by scarf osteotomy in 30 patients (63%) and proximal chevron osteotomy in 18 patients (37%), but we could not determine which type of osteotomy is more likely to lead to hallux varus.
Conclusion

- Both distal chevron and proximal chevron osteotomy...

 - Capable of adequately correcting hallux varus

 - Not significantly different except for the correction power of the first-second IMA and DMAA

∴ Precautious review should be taken into consideration when choosing the level of metatarsal osteotomy due to different correction power associated with each technique.

