Symptomatic Accessory Navicular Bones It is Not Only Type II

Bariteau, Jason ¹; Chamieh, Jad ¹; Banerjee, Sima ¹; Robertson, Douglas ¹,²; Harmouche, Elie ¹; Labib, Sameh ¹; Terk, Michael ¹

1. Emory Spine and Orthopaedic Center, Atlanta, GA 30329
2. Georgia Institute of Technology and Emory University, Department of Biomedical Engineering, Atlanta, GA
NO CONFLICT TO DISCLOSE

Symptomatic Accessory Navicular Bones It is Not Only Type II

Jason Bariteau

My disclosure is in the Final AOFAS Mobile App

I have no potential conflicts with this presentation
Accessory navicular bone found medial to the tarsal navicular bone’s posteromedial tuberosity

- 4-21 % incidence
- More common in females (up to 80% of symptomatic patients)
- 50-90% bilateral

Associated with focal medial foot pain and pes planus

Three types

- **Type I**: 2-3 mm sesamoid bone within the distal portion of the posterior tibial tendon (PTT)
- **Type II**: triangular ossicle 8mm to 12mm in size connected to the navicular bone by a synchondrosis with fibers of the PTT inserting onto the accessory ossicle
- **Type III**: bony union between the navicular bone and the ossicle producing a prominent navicular tuberosity
Aims

- Conventional thought is that type II may be symptomatic and type I and III are basically asymptomatic.
- No prior studies reported the MRI finding of PTT sheath fluid as fluid may indicate PTT dysfunction.
- We hypothesize that types I and III may also lead to significant clinical and radiologic consequences.

Aims

- Study all three accessory navicular bone types.
- Associate bone type with:
 - Localized pain
 - Pes planus
 - Bone marrow reactive change
 - PTT sheath fluid
Methods

- 309 individuals with accessory navicular bones identified from 2 institutions
- Clinical symptoms and MRI findings analyzed
- Those with spring ligament injury were omitted
- Pertinent medical history retrieved
- Pes planus measured from weight-bearing lateral foot radiographs
- Ossicle size determined for type classification
- Studies reviewed by two experienced musculoskeletal radiologists
 - Recorded spring ligament injury
 - Categorized the accessory navicular type
 - Recorded the presence of bone marrow reactive change (BMRC)
 - Noted location of PTT insertions
 - Determined presence of posterior tibial tendon (PTT) sheath fluid
Methods

- Information from medical charts collected on
 - Onset and duration of symptoms
 - Location and intensity of pain (score 1-10, 10 being highest)
 - Difficulty with ambulation
 - Foot wear and conservative treatment
 - Surgical treatment

- Only those with medial or medial dorsum foot pain were considered having a painful navicular bone

- Pearson’s chi square test used for type comparisons in
 - Pain
 - Pes planus
 - BMRC
 - PTT sheath fluid
 - Age (below 50 years, 50 and above)

- Binary logistic regression model adjusted for
 - Age
 - Gender
 - Type
Results

- 184 females
 - Mean age 46.7 years ±16.8
 - Range 5-96
- 125 males
 - Mean age 48 years ±14.6
 - Range 8-86
- Type distribution
 - 27.5% type I
 - 57% type II
 - 15.5% type III

- Reason for presentation
 - Trauma 52%
 - 58% sprain, inversion or twisting mechanism
 - 26% repetitive trauma from athletic activities
 - 10% had various mechanisms of injury
 - 5% lacked sufficient data
 - Pain 43%, mean score 6.23 ± 2.2 out of 10
 - 29% medial foot
 - 20% lateral ankle
 - 18.5% lateral foot
 - 18% heel
 - 4% lacked data
Results

<table>
<thead>
<tr>
<th>Type</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>25%</td>
<td>50%</td>
<td>8%</td>
</tr>
<tr>
<td>BMRC</td>
<td>9%</td>
<td>48%</td>
<td>6%</td>
</tr>
<tr>
<td>Pes Planus</td>
<td>32%</td>
<td>38%</td>
<td>8%</td>
</tr>
<tr>
<td>PTT Sheath Fluid</td>
<td>33%</td>
<td>42%</td>
<td>6%</td>
</tr>
</tbody>
</table>

- No statistical differences between
 - Bone type and gender (p’s>0.5)
 - Bone type and the two age groups (p’s>0.9)
 - Two age groups with regards to
 - Pain
 - Pes planus
 - BMRC
 - PTT fluid
- Only gender difference with PTT fluid, twice as frequent in females (p=0.023)

Table 1. Characteristics distribution among types
Results

- **Type I vs Type II**
 - 9.2 [CI: 4 - 20] adjusted odds (OR\textsubscript{adj}) of BMRC in type II, p<0.0001
 - Pain, pes planus, PTT sheath fluid similar

- **Type I vs Type III**
 - 2 [CI: 1.1 - 3.5] OR\textsubscript{adj} of pain in type I, p=0.02
 - 2.4 [CI: 1.4 - 4] OR\textsubscript{adj} of pes planus in type I, p=0.002
 - 3 [CI: 1.6 - 5.6] OR\textsubscript{adj} of PTT sheath fluid in type I, p=0.001
 - BMRC similar

- **Type II vs Type III**
 - 6.6 [CI: 2 - 19] OR\textsubscript{adj} of pain in type II, p=0.001
 - 13.9 [CI: 4 - 46] OR\textsubscript{adj} of BMRC in type II, p<0.0001
 - 6.7 [CI: 2 - 19.5] OR\textsubscript{adj} of pes planus in type II, p=0.001
 - 11.5 [CI: 3 - 39] OR\textsubscript{adj} of PTT sheath fluid in type II, p<0.0001
Discussion

- Highest prevalence of pain, pes planus, bone marrow reactive change, and PTT sheath fluid in type II accessory navicular bones
- MRI-detected bone marrow reactive change most prominent adjacent to the synchondrosis
- Fair prevalence of pes planus in Types I and II accessory navicular bone types, 32% and 38%
- PTT inserted into the proximal ossicle for all accessory navicular bone types
- Type I and type II accessory navicular bones are actually similar with regards to pain, pes planus, and PTT fluid
- BMRC greater in type II, explained by the type I ossicle’s small size making BMRC more difficult to visualize
- Higher prevalence of pain, pes planus and PTT sheath fluid in type I bones over type III
Discussion

- Type II and III accessory navicular bones are different for all our assessments.
- Conforms to conventional thought as type III bones are expected to be fairly asymptomatic and type II to be the most symptomatic.
- Presence of PTT sheath fluid only significant difference between genders.
 - Purely statistical significance, unlikely any clinical implication.
- No role for age group in all our assessments.
- Limitations
 - Retrospective design.
 - Lack of surgical or histological correlation.
 - All subjects did have foot pain, albeit in other locations, or they would not have had an MRI.
 - Imaging screening of the population to identify individuals with accessory navicular bones with would be too costly.
Conclusion

- The results described here challenge the conventional thought that type I accessory navicular bones are mostly asymptomatic.
- No statistical difference in the prevalence of pain, pes planus, and PTT sheath fluid between type I and II bones.
- Our outcomes corroborate conventional thought that type II bones are the most symptomatic and type III bones relatively asymptomatic.
- In future work we plan to evaluate the effect of clinical interventions on the symptoms and findings of symptomatic accessory navicular bones.
References

